toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author R. Valenti; N. Sebe; Theo Gevers edit  url
doi  openurl
  Title What are you looking at? Improving Visual gaze Estimation by Saliency Type Journal Article
  Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 98 Issue 3 Pages 324-334  
  Keywords  
  Abstract Impact factor 2010: 5.15
Impact factor 2011/12?: 5.36
In this paper we present a novel mechanism to obtain enhanced gaze estimation for subjects looking at a scene or an image. The system makes use of prior knowledge about the scene (e.g. an image on a computer screen), to define a probability map of the scene the subject is gazing at, in order to find the most probable location. The proposed system helps in correcting the fixations which are erroneously estimated by the gaze estimation device by employing a saliency framework to adjust the resulting gaze point vector. The system is tested on three scenarios: using eye tracking data, enhancing a low accuracy webcam based eye tracker, and using a head pose tracker. The correlation between the subjects in the commercial eye tracking data is improved by an average of 13.91%. The correlation on the low accuracy eye gaze tracker is improved by 59.85%, and for the head pose tracker we obtain an improvement of 10.23%. These results show the potential of the system as a way to enhance and self-calibrate different visual gaze estimation systems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number (down) Admin @ si @ VSG2012 Serial 1848  
Permanent link to this record
 

 
Author Diego Velazquez; Pau Rodriguez; Alexandre Lacoste; Issam H. Laradji; Xavier Roca; Jordi Gonzalez edit  url
openurl 
  Title Evaluating Counterfactual Explainers Type Journal
  Year 2023 Publication Transactions on Machine Learning Research Abbreviated Journal TMLR  
  Volume Issue Pages  
  Keywords Explainability; Counterfactuals; XAI  
  Abstract Explainability methods have been widely used to provide insight into the decisions made by statistical models, thus facilitating their adoption in various domains within the industry. Counterfactual explanation methods aim to improve our understanding of a model by perturbing samples in a way that would alter its response in an unexpected manner. This information is helpful for users and for machine learning practitioners to understand and improve their models. Given the value provided by counterfactual explanations, there is a growing interest in the research community to investigate and propose new methods. However, we identify two issues that could hinder the progress in this field. (1) Existing metrics do not accurately reflect the value of an explainability method for the users. (2) Comparisons between methods are usually performed with datasets like CelebA, where images are annotated with attributes that do not fully describe them and with subjective attributes such as ``Attractive''. In this work, we address these problems by proposing an evaluation method with a principled metric to evaluate and compare different counterfactual explanation methods. The evaluation method is based on a synthetic dataset where images are fully described by their annotated attributes. As a result, we are able to perform a fair comparison of multiple explainability methods in the recent literature, obtaining insights about their performance. We make the code public for the benefit of the research community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number (down) Admin @ si @ VRL2023 Serial 3891  
Permanent link to this record
 

 
Author Diego Velazquez; Josep M. Gonfaus; Pau Rodriguez; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez edit  url
doi  openurl
  Title Logo Detection With No Priors Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue Pages 106998-107011  
  Keywords  
  Abstract In recent years, top referred methods on object detection like R-CNN have implemented this task as a combination of proposal region generation and supervised classification on the proposed bounding boxes. Although this pipeline has achieved state-of-the-art results in multiple datasets, it has inherent limitations that make object detection a very complex and inefficient task in computational terms. Instead of considering this standard strategy, in this paper we enhance Detection Transformers (DETR) which tackles object detection as a set-prediction problem directly in an end-to-end fully differentiable pipeline without requiring priors. In particular, we incorporate Feature Pyramids (FP) to the DETR architecture and demonstrate the effectiveness of the resulting DETR-FP approach on improving logo detection results thanks to the improved detection of small logos. So, without requiring any domain specific prior to be fed to the model, DETR-FP obtains competitive results on the OpenLogo and MS-COCO datasets offering a relative improvement of up to 30%, when compared to a Faster R-CNN baseline which strongly depends on hand-designed priors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number (down) Admin @ si @ VGR2021 Serial 3664  
Permanent link to this record
 

 
Author R. Valenti; Theo Gevers edit  doi
openurl 
  Title Combining Head Pose and Eye Location Information for Gaze Estimation Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 2 Pages 802-815  
  Keywords  
  Abstract Impact factor 2010: 2.92
Impact factor 2011/12?: 3.32
Head pose and eye location for gaze estimation have been separately studied in numerous works in the literature. Previous research shows that satisfactory accuracy in head pose and eye location estimation can be achieved in constrained settings. However, in the presence of nonfrontal faces, eye locators are not adequate to accurately locate the center of the eyes. On the other hand, head pose estimation techniques are able to deal with these conditions; hence, they may be suited to enhance the accuracy of eye localization. Therefore, in this paper, a hybrid scheme is proposed to combine head pose and eye location information to obtain enhanced gaze estimation. To this end, the transformation matrix obtained from the head pose is used to normalize the eye regions, and in turn, the transformation matrix generated by the found eye location is used to correct the pose estimation procedure. The scheme is designed to enhance the accuracy of eye location estimations, particularly in low-resolution videos, to extend the operative range of the eye locators, and to improve the accuracy of the head pose tracker. These enhanced estimations are then combined to obtain a novel visual gaze estimation system, which uses both eye location and head information to refine the gaze estimates. From the experimental results, it can be derived that the proposed unified scheme improves the accuracy of eye estimations by 16% to 23%. Furthermore, it considerably extends its operating range by more than 15° by overcoming the problems introduced by extreme head poses. Moreover, the accuracy of the head pose tracker is improved by 12% to 24%. Finally, the experimentation on the proposed combined gaze estimation system shows that it is accurate (with a mean error between 2° and 5°) and that it can be used in cases where classic approaches would fail without imposing restraints on the position of the head.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number (down) Admin @ si @ VaG 2012b Serial 1851  
Permanent link to this record
 

 
Author R. Valenti; Theo Gevers edit  doi
openurl 
  Title Accurate Eye Center Location through Invariant Isocentric Patterns Type Journal Article
  Year 2012 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 34 Issue 9 Pages 1785-1798  
  Keywords  
  Abstract Impact factor 2010: 5.308
Impact factor 2011/12?: 5.96
Locating the center of the eyes allows for valuable information to be captured and used in a wide range of applications. Accurate eye center location can be determined using commercial eye-gaze trackers, but additional constraints and expensive hardware make these existing solutions unattractive and impossible to use on standard (i.e., visible wavelength), low-resolution images of eyes. Systems based solely on appearance are proposed in the literature, but their accuracy does not allow us to accurately locate and distinguish eye centers movements in these low-resolution settings. Our aim is to bridge this gap by locating the center of the eye within the area of the pupil on low-resolution images taken from a webcam or a similar device. The proposed method makes use of isophote properties to gain invariance to linear lighting changes (contrast and brightness), to achieve in-plane rotational invariance, and to keep low-computational costs. To further gain scale invariance, the approach is applied to a scale space pyramid. In this paper, we extensively test our approach for its robustness to changes in illumination, head pose, scale, occlusion, and eye rotation. We demonstrate that our system can achieve a significant improvement in accuracy over state-of-the-art techniques for eye center location in standard low-resolution imagery.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number (down) Admin @ si @ VaG 2012a Serial 1849  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: