toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Antonio Esteban Lansaque; Agnes Borras; Esmitt Ramirez; Carles Sanchez edit   pdf
url  doi
openurl 
  Title Intraoperative Extraction of Airways Anatomy in VideoBronchoscopy Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 8 Issue Pages 159696 - 159704  
  Keywords  
  Abstract A main bottleneck in bronchoscopic biopsy sampling is to efficiently reach the lesion navigating across bronchial levels. Any guidance system should be able to localize the scope position during the intervention with minimal costs and alteration of clinical protocols. With the final goal of an affordable image-based guidance, this work presents a novel strategy to extract and codify the anatomical structure of bronchi, as well as, the scope navigation path from videobronchoscopy. Experiments using interventional data show that our method accurately identifies the bronchial structure. Meanwhile, experiments using simulated data verify that the extracted navigation path matches the 3D route.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number (up) Admin @ si @ GEB2020 Serial 3467  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Julien Enconniere; Saryani Asmayawati; Pau Folch; Juan Borrego-Carazo; Miquel Angel Piera edit  doi
openurl 
  Title E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 7489-7503  
  Keywords  
  Abstract More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.118; 600.145 Approved no  
  Call Number (up) Admin @ si @ GHE2022 Serial 3721  
Permanent link to this record
 

 
Author Debora Gil; Rosa Maria Ortiz; Carles Sanchez; Antoni Rosell edit   pdf
doi  openurl
  Title Objective endoscopic measurements of central airway stenosis. A pilot study Type Journal Article
  Year 2018 Publication Respiration Abbreviated Journal RES  
  Volume 95 Issue Pages 63–69  
  Keywords Bronchoscopy; Tracheal stenosis; Airway stenosis; Computer-assisted analysis  
  Abstract Endoscopic estimation of the degree of stenosis in central airway obstruction is subjective and highly variable. Objective: To determine the benefits of using SENSA (System for Endoscopic Stenosis Assessment), an image-based computational software, for obtaining objective stenosis index (SI) measurements among a group of expert bronchoscopists and general pulmonologists. Methods: A total of 7 expert bronchoscopists and 7 general pulmonologists were enrolled to validate SENSA usage. The SI obtained by the physicians and by SENSA were compared with a reference SI to set their precision in SI computation. We used SENSA to efficiently obtain this reference SI in 11 selected cases of benign stenosis. A Web platform with three user-friendly microtasks was designed to gather the data. The users had to visually estimate the SI from videos with and without contours of the normal and the obstructed area provided by SENSA. The users were able to modify the SENSA contours to define the reference SI using morphometric bronchoscopy. Results: Visual SI estimation accuracy was associated with neither bronchoscopic experience (p = 0.71) nor the contours of the normal and the obstructed area provided by the system (p = 0.13). The precision of the SI by SENSA was 97.7% (95% CI: 92.4-103.7), which is significantly better than the precision of the SI by visual estimation (p < 0.001), with an improvement by at least 15%. Conclusion: SENSA provides objective SI measurements with a precision of up to 99.5%, which can be calculated from any bronchoscope using an affordable scalable interface. Providing normal and obstructed contours on bronchoscopic videos does not improve physicians' visual estimation of the SI.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.075; 600.096; 600.145 Approved no  
  Call Number (up) Admin @ si @ GOS2018 Serial 3043  
Permanent link to this record
 

 
Author Debora Gil; David Roche; Agnes Borras; Jesus Giraldo edit  doi
openurl 
  Title Terminating Evolutionary Algorithms at their Steady State Type Journal Article
  Year 2015 Publication Computational Optimization and Applications Abbreviated Journal COA  
  Volume 61 Issue 2 Pages 489-515  
  Keywords Evolutionary algorithms; Termination condition; Steady state; Differential evolution  
  Abstract Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-6003 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.044; 605.203; 600.060; 600.075 Approved no  
  Call Number (up) Admin @ si @ GRB2015 Serial 2560  
Permanent link to this record
 

 
Author Debora Gil; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell edit   pdf
url  doi
openurl 
  Title Segmentation of Distal Airways using Structural Analysis Type Journal Article
  Year 2019 Publication PloS one Abbreviated Journal Plos  
  Volume 14 Issue 12 Pages  
  Keywords  
  Abstract Segmentation of airways in Computed Tomography (CT) scans is a must for accurate support of diagnosis and intervention of many pulmonary disorders. In particular, lung cancer diagnosis would benefit from segmentations reaching most distal airways. We present a method that combines descriptors of bronchi local appearance and graph global structural analysis to fine-tune thresholds on the descriptors adapted for each bronchial level. We have compared our method to the top performers of the EXACT09 challenge and to a commercial software for biopsy planning evaluated in an own-collected data-base of high resolution CT scans acquired under different breathing conditions. Results on EXACT09 data show that our method provides a high leakage reduction with minimum loss in airway detection. Results on our data-base show the reliability across varying breathing conditions and a competitive performance for biopsy planning compared to a commercial solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number (up) Admin @ si @ GSB2019 Serial 3357  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: