|
Marina Alberti, Simone Balocco, Xavier Carrillo, J. Mauri, & Petia Radeva. (2013). Automatic non-rigid temporal alignment of IVUS sequences: method and quantitative validation. UMB - Ultrasound in Medicine and Biology, 39(9), 1698–712.
Abstract: Clinical studies on atherosclerosis regression/progression performed by intravascular ultrasound analysis would benefit from accurate alignment of sequences of the same patient before and after clinical interventions and at follow-up. In this article, a methodology for automatic alignment of intravascular ultrasound sequences based on the dynamic time warping technique is proposed. The non-rigid alignment is adapted to the specific task by applying it to multidimensional signals describing the morphologic content of the vessel. Moreover, dynamic time warping is embedded into a framework comprising a strategy to address partial overlapping between acquisitions and a term that regularizes non-physiologic temporal compression/expansion of the sequences. Extensive validation is performed on both synthetic and in vivo data. The proposed method reaches alignment errors of approximately 0.43 mm for pairs of sequences acquired during the same intervention phase and 0.77 mm for pairs of sequences acquired at successive intervention stages.
Keywords: Intravascular ultrasound; Dynamic time warping; Non-rigid alignment; Sequence matching; Partial overlapping strategy
|
|
|
Mark Philip Philipsen, Jacob Velling Dueholm, Anders Jorgensen, Sergio Escalera, & Thomas B. Moeslund. (2018). Organ Segmentation in Poultry Viscera Using RGB-D. SENS - Sensors, 18(1), 117.
Abstract: We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.
Keywords: semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN
|
|
|
Md. Mostafa Kamal Sarker, Hatem A. Rashwan, Farhan Akram, Estefania Talavera, Syeda Furruka Banu, Petia Radeva, et al. (2019). Recognizing Food Places in Egocentric Photo-Streams Using Multi-Scale Atrous Convolutional Networks and Self-Attention Mechanism. ACCESS - IEEE Access, 7, 39069–39082.
Abstract: Wearable sensors (e.g., lifelogging cameras) represent very useful tools to monitor people's daily habits and lifestyle. Wearable cameras are able to continuously capture different moments of the day of their wearers, their environment, and interactions with objects, people, and places reflecting their personal lifestyle. The food places where people eat, drink, and buy food, such as restaurants, bars, and supermarkets, can directly affect their daily dietary intake and behavior. Consequently, developing an automated monitoring system based on analyzing a person's food habits from daily recorded egocentric photo-streams of the food places can provide valuable means for people to improve their eating habits. This can be done by generating a detailed report of the time spent in specific food places by classifying the captured food place images to different groups. In this paper, we propose a self-attention mechanism with multi-scale atrous convolutional networks to generate discriminative features from image streams to recognize a predetermined set of food place categories. We apply our model on an egocentric food place dataset called “EgoFoodPlaces” that comprises of 43 392 images captured by 16 individuals using a lifelogging camera. The proposed model achieved an overall classification accuracy of 80% on the “EgoFoodPlaces” dataset, respectively, outperforming the baseline methods, such as VGG16, ResNet50, and InceptionV3.
|
|
|
Md. Mostafa Kamal Sarker, Hatem A. Rashwan, Farhan Akram, Vivek Kumar Singh, Syeda Furruka Banu, Forhad U H Chowdhury, et al. (2021). SLSNet: Skin lesion segmentation using a lightweight generative adversarial network. ESWA - Expert Systems With Applications, 183, 115433.
Abstract: The determination of precise skin lesion boundaries in dermoscopic images using automated methods faces many challenges, most importantly, the presence of hair, inconspicuous lesion edges and low contrast in dermoscopic images, and variability in the color, texture and shapes of skin lesions. Existing deep learning-based skin lesion segmentation algorithms are expensive in terms of computational time and memory. Consequently, running such segmentation algorithms requires a powerful GPU and high bandwidth memory, which are not available in dermoscopy devices. Thus, this article aims to achieve precise skin lesion segmentation with minimum resources: a lightweight, efficient generative adversarial network (GAN) model called SLSNet, which combines 1-D kernel factorized networks, position and channel attention, and multiscale aggregation mechanisms with a GAN model. The 1-D kernel factorized network reduces the computational cost of 2D filtering. The position and channel attention modules enhance the discriminative ability between the lesion and non-lesion feature representations in spatial and channel dimensions, respectively. A multiscale block is also used to aggregate the coarse-to-fine features of input skin images and reduce the effect of the artifacts. SLSNet is evaluated on two publicly available datasets: ISBI 2017 and the ISIC 2018. Although SLSNet has only 2.35 million parameters, the experimental results demonstrate that it achieves segmentation results on a par with the state-of-the-art skin lesion segmentation methods with an accuracy of 97.61%, and Dice and Jaccard similarity coefficients of 90.63% and 81.98%, respectively. SLSNet can run at more than 110 frames per second (FPS) in a single GTX1080Ti GPU, which is faster than well-known deep learning-based image segmentation models, such as FCN. Therefore, SLSNet can be used for practical dermoscopic applications.
|
|
|
Meysam Madadi, Hugo Bertiche, & Sergio Escalera. (2020). SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery. PR - Pattern Recognition, 106, 107472.
Abstract: In this paper we propose to embed SMPL within a deep-based model to accurately estimate 3D pose and shape from a still RGB image. We use CNN-based 3D joint predictions as an intermediate representation to regress SMPL pose and shape parameters. Later, 3D joints are reconstructed again in the SMPL output. This module can be seen as an autoencoder where the encoder is a deep neural network and the decoder is SMPL model. We refer to this as SMPL reverse (SMPLR). By implementing SMPLR as an encoder-decoder we avoid the need of complex constraints on pose and shape. Furthermore, given that in-the-wild datasets usually lack accurate 3D annotations, it is desirable to lift 2D joints to 3D without pairing 3D annotations with RGB images. Therefore, we also propose a denoising autoencoder (DAE) module between CNN and SMPLR, able to lift 2D joints to 3D and partially recover from structured error. We evaluate our method on SURREAL and Human3.6M datasets, showing improvement over SMPL-based state-of-the-art alternatives by about 4 and 12 mm, respectively.
Keywords: Deep learning; 3D Human pose; Body shape; SMPL; Denoising autoencoder; Volumetric stack hourglass
|
|