toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Roger Max Calle Quispe; Maya Aghaei Gavari; Eduardo Aguilar Torres edit  url
openurl 
  Title Towards real-time accurate safety helmets detection through a deep learning-based method Type Journal
  Year 2023 Publication Ingeniare. Revista chilena de ingenieria Abbreviated Journal  
  Volume 31 Issue 12 Pages  
  Keywords  
  Abstract Occupational safety is a fundamental activity in industries and revolves around the management of the necessary controls that must be present to mitigate occupational risks. These controls include verifying the use of Personal Protection Equipment (PPE). Within PPE, safety helmets are vital to reducing severe or fatal consequences caused by head injuries. This problem has been addressed recently by various research based on deep learning to detect the usage of safety helmets by the present people in the industrial field.

These works have achieved promising results for safety helmet detection using object detection methods from the YOLO family. In this work, we propose to analyze the performance of Scaled-YOLOv4, a novel model of the YOLO family that has yet to be previously studied for this problem. The performance of the Scaled-YOLOv4 is evaluated on two public databases, carefully selected among the previously proposed datasets for the occupational safety framework. We demonstrate the superiority of Scaled-YOLOv4 in terms of mAP and Fl-score concerning the previous works for both databases. Further, we summarize the currently available datasets for safety helmet detection purposes and discuss their suitability.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CAA2023 Serial 3846  
Permanent link to this record
 

 
Author P. Canals; Simone Balocco; O. Diaz; J. Li; A. Garcia Tornel; M. Olive Gadea; M. Ribo edit  url
doi  openurl
  Title A fully automatic method for vascular tortuosity feature extraction in the supra-aortic region: unraveling possibilities in stroke treatment planning Type Journal Article
  Year 2023 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 104 Issue 102170 Pages  
  Keywords Artificial intelligence; Deep learning; Stroke; Thrombectomy; Vascular feature extraction; Vascular tortuosity  
  Abstract Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke patients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements obtained through automatic processing were compared to manual annotations from two observers for a thorough validation of the method. The proposed feature extraction method presented similar performance to the inter-rater variability observed in the measurement of 33 geometrical and morphological features of the arterial anatomy in the supra-aortic region. This system will contribute to the development of more complex models to advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the vascular tortuosity characterization of patients.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CBD2023 Serial 4005  
Permanent link to this record
 

 
Author Mohammad Momeny; Ali Asghar Neshat; Ahmad Jahanbakhshi; Majid Mahmoudi; Yiannis Ampatzidis; Petia Radeva edit  url
openurl 
  Title Grading and fraud detection of saffron via learning-to-augment incorporated Inception-v4 CNN Type Journal Article
  Year 2023 Publication Food Control Abbreviated Journal FC  
  Volume 147 Issue Pages 109554  
  Keywords  
  Abstract Saffron is a well-known product in the food industry. It is one of the spices that are sometimes adulterated with the sole motive of gaining more economic profit. Today, machine vision systems are widely used in controlling the quality of food and agricultural products as a new, non-destructive, and inexpensive approach. In this study, a machine vision system based on deep learning was used to detect fraud and saffron quality. A dataset of 1869 images was created and categorized in 6 classes including: dried saffron stigma using a dryer; dried saffron stigma using pressing method; pure stem of saffron; sunflower; saffron stem mixed with food coloring; and corn silk mixed with food coloring. A Learning-to-Augment incorporated Inception-v4 Convolutional Neural Network (LAII-v4 CNN) was developed for grading and fraud detection of saffron in images captured by smartphones. The best policies of data augmentation were selected with the proposed LAII-v4 CNN using images corrupted by Gaussian, speckle, and impulse noise to address overfitting the model. The proposed LAII-v4 CNN compared with regular CNN-based methods and traditional classifiers. Ensemble of Bagged Decision Trees, Ensemble of Boosted Decision Trees, k-Nearest Neighbor, Random Under-sampling Boosted Trees, and Support Vector Machine were used for classification of the features extracted by Histograms of Oriented Gradients and Local Binary Patterns, and selected by the Principal Component Analysis. The results showed that the proposed LAII-v4 CNN with an accuracy of 99.5% has achieved the best performance by employing batch normalization, Dropout, and leaky ReLU.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ MNJ2023 Serial 3882  
Permanent link to this record
 

 
Author Fernando Vilariño; Ludmila I. Kuncheva; Petia Radeva edit  doi
openurl 
  Title ROC curves and video analysis optimization in intestinal capsule endoscopy Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 8 Pages 875–881  
  Keywords ROC curves; Classification; Classifiers ensemble; Detection of intestinal contractions; Imbalanced classes; Wireless capsule endoscopy  
  Abstract Wireless capsule endoscopy involves inspection of hours of video material by a highly qualified professional. Time episodes corresponding to intestinal contractions, which are of interest to the physician constitute about 1% of the video. The problem is to label automatically time episodes containing contractions so that only a fraction of the video needs inspection. As the classes of contraction and non-contraction images in the video are largely imbalanced, ROC curves are used to optimize the trade-off between false positive and false negative rates. Classifier ensemble methods and simple classifiers were examined. Our results reinforce the claims from recent literature that classifier ensemble methods specifically designed for imbalanced problems have substantial advantages over simple classifiers and standard classifier ensembles. By using ROC curves with the bagging ensemble method the inspection time can be drastically reduced at the expense of a small fraction of missed contractions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) 800 Expedition Conference  
  Notes MILAB;MV;SIAI Approved no  
  Call Number BCNPCL @ bcnpcl @ VKR2006; IAM @ iam @ VKR2006 Serial 647  
Permanent link to this record
 

 
Author Fernando Vilariño; Panagiota Spyridonos; Fosca De Iorio; Jordi Vitria; Fernando Azpiroz; Petia Radeva edit   pdf
doi  openurl
  Title Intestinal Motility Assessment With Video Capsule Endoscopy: Automatic Annotation of Phasic Intestinal Contractions Type Journal Article
  Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 29 Issue 2 Pages 246-259  
  Keywords  
  Abstract Intestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions shown in a video provided by an ingestible capsule with a wireless micro-camera. The manual labeling of all the motility events requires large amount of time for offline screening in search of findings with low prevalence, which turns this procedure currently unpractical. In this paper, we propose a machine learning system to automatically detect the phasic intestinal contractions in video capsule endoscopy, driving a useful but not feasible clinical routine into a feasible clinical procedure. Our proposal is based on a sequential design which involves the analysis of textural, color, and blob features together with SVM classifiers. Our approach tackles the reduction of the imbalance rate of data and allows the inclusion of domain knowledge as new stages in the cascade. We present a detailed analysis, both in a quantitative and a qualitative way, by providing several measures of performance and the assessment study of interobserver variability. Our system performs at 70% of sensitivity for individual detection, whilst obtaining equivalent patterns to those of the experts for density of contractions.  
  Address  
  Corporate Author IEEE Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area (up) 800 Expedition Conference  
  Notes MILAB;MV;OR;SIAI Approved no  
  Call Number BCNPCL @ bcnpcl @ VSD2010; IAM @ iam @ VSI2010 Serial 1281  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: