toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Eduardo Aguilar; Bhalaji Nagarajan; Beatriz Remeseiro; Petia Radeva edit  doi
openurl 
  Title Bayesian deep learning for semantic segmentation of food images Type Journal Article
  Year 2022 Publication Computers and Electrical Engineering Abbreviated Journal CEE  
  Volume 103 Issue Pages 108380  
  Keywords Deep learning; Uncertainty quantification; Bayesian inference; Image segmentation; Food analysis  
  Abstract (down) Deep learning has provided promising results in various applications; however, algorithms tend to be overconfident in their predictions, even though they may be entirely wrong. Particularly for critical applications, the model should provide answers only when it is very sure of them. This article presents a Bayesian version of two different state-of-the-art semantic segmentation methods to perform multi-class segmentation of foods and estimate the uncertainty about the given predictions. The proposed methods were evaluated on three public pixel-annotated food datasets. As a result, we can conclude that Bayesian methods improve the performance achieved by the baseline architectures and, in addition, provide information to improve decision-making. Furthermore, based on the extracted uncertainty map, we proposed three measures to rank the images according to the degree of noisy annotations they contained. Note that the top 135 images ranked by one of these measures include more than half of the worst-labeled food images.  
  Address October 2022  
  Corporate Author Thesis  
  Publisher Science Direct Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ ANR2022 Serial 3763  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Inhibition of false landmarks Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 9 Pages 1022-1030  
  Keywords  
  Abstract (down) Corners and junctions are landmarks characterized by the lack of differentiability in the unit tangent to the image level curve. Detectors based on differential operators are not, by their own definition, the best posed as they require a higher degree of differentiability to yield a reliable response. We argue that a corner detector should be based on the degree of continuity of the tangent vector to the image level sets, work on the image domain and need no assumptions on neither the image local structure nor the particular geometry of the corner/junction. An operator measuring the degree of differentiability of the projection matrix on the image gradient fulfills the above requirements. Because using smoothing kernels leads to corner misplacement, we suggest an alternative fake response remover based on the receptive field inhibition of spurious details. The combination of both orientation discontinuity detection and noise inhibition produce our inhibition orientation energy (IOE) landmark locator.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. Place of Publication New York, NY, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GiR2006 Serial 1529  
Permanent link to this record
 

 
Author Mariella Dimiccoli edit   pdf
doi  openurl
  Title Fundamentals of cone regression Type Journal
  Year 2016 Publication Journal of Statistics Surveys Abbreviated Journal  
  Volume 10 Issue Pages 53-99  
  Keywords cone regression; linear complementarity problems; proximal operators.  
  Abstract (down) Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1935-7516 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @Dim2016a Serial 2783  
Permanent link to this record
 

 
Author Marina Alberti; Simone Balocco; Xavier Carrillo; J. Mauri; Petia Radeva edit  url
doi  openurl
  Title Automatic non-rigid temporal alignment of IVUS sequences: method and quantitative validation Type Journal Article
  Year 2013 Publication Ultrasound in Medicine and Biology Abbreviated Journal UMB  
  Volume 39 Issue 9 Pages 1698-712  
  Keywords Intravascular ultrasound; Dynamic time warping; Non-rigid alignment; Sequence matching; Partial overlapping strategy  
  Abstract (down) Clinical studies on atherosclerosis regression/progression performed by intravascular ultrasound analysis would benefit from accurate alignment of sequences of the same patient before and after clinical interventions and at follow-up. In this article, a methodology for automatic alignment of intravascular ultrasound sequences based on the dynamic time warping technique is proposed. The non-rigid alignment is adapted to the specific task by applying it to multidimensional signals describing the morphologic content of the vessel. Moreover, dynamic time warping is embedded into a framework comprising a strategy to address partial overlapping between acquisitions and a term that regularizes non-physiologic temporal compression/expansion of the sequences. Extensive validation is performed on both synthetic and in vivo data. The proposed method reaches alignment errors of approximately 0.43 mm for pairs of sequences acquired during the same intervention phase and 0.77 mm for pairs of sequences acquired at successive intervention stages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ ABC2013 Serial 2313  
Permanent link to this record
 

 
Author Karim Lekadir; Alfiia Galimzianova; Angels Betriu; Maria del Mar Vila; Laura Igual; Daniel L. Rubin; Elvira Fernandez-Giraldez; Petia Radeva; Sandy Napel edit  doi
openurl 
  Title A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound Type Journal Article
  Year 2017 Publication IEEE Journal Biomedical and Health Informatics Abbreviated Journal J-BHI  
  Volume 21 Issue 1 Pages 48-55  
  Keywords  
  Abstract (down) Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no menciona Approved no  
  Call Number Admin @ si @ LGB2017 Serial 2931  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: