toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Marçal Rusiñol; Volkmar Frinken; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados edit  doi
openurl 
  Title Multimodal page classification in administrative document image streams Type Journal Article
  Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue 4 Pages 331-341  
  Keywords Digital mail room; Multimodal page classification; Visual and textual document description  
  Abstract (up) In this paper, we present a page classification application in a banking workflow. The proposed architecture represents administrative document images by merging visual and textual descriptions. The visual description is based on a hierarchical representation of the pixel intensity distribution. The textual description uses latent semantic analysis to represent document content as a mixture of topics. Several off-the-shelf classifiers and different strategies for combining visual and textual cues have been evaluated. A final step uses an n-gram model of the page stream allowing a finer-grained classification of pages. The proposed method has been tested in a real large-scale environment and we report results on a dataset of 70,000 pages.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; LAMP; 600.056; 600.061; 601.240; 601.223; 600.077; 600.079 Approved no  
  Call Number Admin @ si @ RFK2014 Serial 2523  
Permanent link to this record
 

 
Author Rada Deeb; Joost Van de Weijer; Damien Muselet; Mathieu Hebert; Alain Tremeau edit   pdf
url  openurl
  Title Deep spectral reflectance and illuminant estimation from self-interreflections Type Journal Article
  Year 2019 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 31 Issue 1 Pages 105-114  
  Keywords  
  Abstract (up) In this work, we propose a convolutional neural network based approach to estimate the spectral reflectance of a surface and spectral power distribution of light from a single RGB image of a V-shaped surface. Interreflections happening in a concave surface lead to gradients of RGB values over its area. These gradients carry a lot of information concerning the physical properties of the surface and the illuminant. Our network is trained with only simulated data constructed using a physics-based interreflection model. Coupling interreflection effects with deep learning helps to retrieve the spectral reflectance under an unknown light and to estimate spectral power distribution of this light as well. In addition, it is more robust to the presence of image noise than classical approaches. Our results show that the proposed approach outperforms state-of-the-art learning-based approaches on simulated data. In addition, it gives better results on real data compared to other interreflection-based approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ DWM2019 Serial 3362  
Permanent link to this record
 

 
Author Yaxing Wang; Abel Gonzalez-Garcia; Luis Herranz; Joost Van de Weijer edit   pdf
url  openurl
  Title Controlling biases and diversity in diverse image-to-image translation Type Journal Article
  Year 2021 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 202 Issue Pages 103082  
  Keywords  
  Abstract (up) JCR 2019 Q2, IF=3.121
The task of unpaired image-to-image translation is highly challenging due to the lack of explicit cross-domain pairs of instances. We consider here diverse image translation (DIT), an even more challenging setting in which an image can have multiple plausible translations. This is normally achieved by explicitly disentangling content and style in the latent representation and sampling different styles codes while maintaining the image content. Despite the success of current DIT models, they are prone to suffer from bias. In this paper, we study the problem of bias in image-to-image translation. Biased datasets may add undesired changes (e.g. change gender or race in face images) to the output translations as a consequence of the particular underlying visual distribution in the target domain. In order to alleviate the effects of this problem we propose the use of semantic constraints that enforce the preservation of desired image properties. Our proposed model is a step towards unbiased diverse image-to-image translation (UDIT), and results in less unwanted changes in the translated images while still performing the wanted transformation. Experiments on several heavily biased datasets show the effectiveness of the proposed techniques in different domains such as faces, objects, and scenes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.109; 600.147 Approved no  
  Call Number Admin @ si @ WGH2021 Serial 3464  
Permanent link to this record
 

 
Author Tao Wu; Kai Wang; Chuanming Tang; Jianlin Zhang edit  url
openurl 
  Title Diffusion-based network for unsupervised landmark detection Type Journal Article
  Year 2024 Publication Knowledge-Based Systems Abbreviated Journal  
  Volume 292 Issue Pages 111627  
  Keywords  
  Abstract (up) Landmark detection is a fundamental task aiming at identifying specific landmarks that serve as representations of distinct object features within an image. However, the present landmark detection algorithms often adopt complex architectures and are trained in a supervised manner using large datasets to achieve satisfactory performance. When faced with limited data, these algorithms tend to experience a notable decline in accuracy. To address these drawbacks, we propose a novel diffusion-based network (DBN) for unsupervised landmark detection, which leverages the generation ability of the diffusion models to detect the landmark locations. In particular, we introduce a dual-branch encoder (DualE) for extracting visual features and predicting landmarks. Additionally, we lighten the decoder structure for faster inference, referred to as LightD. By this means, we avoid relying on extensive data comparison and the necessity of designing complex architectures as in previous methods. Experiments on CelebA, AFLW, 300W and Deepfashion benchmarks have shown that DBN performs state-of-the-art compared to the existing methods. Furthermore, DBN shows robustness even when faced with limited data cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ WWT2024 Serial 4024  
Permanent link to this record
 

 
Author Pedro Martins; Paulo Carvalho; Carlo Gatta edit   pdf
doi  openurl
  Title Context-aware features and robust image representations Type Journal Article
  Year 2014 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR  
  Volume 25 Issue 2 Pages 339-348  
  Keywords  
  Abstract (up) Local image features are often used to efficiently represent image content. The limited number of types of features that a local feature extractor responds to might be insufficient to provide a robust image representation. To overcome this limitation, we propose a context-aware feature extraction formulated under an information theoretic framework. The algorithm does not respond to a specific type of features; the idea is to retrieve complementary features which are relevant within the image context. We empirically validate the method by investigating the repeatability, the completeness, and the complementarity of context-aware features on standard benchmarks. In a comparison with strictly local features, we show that our context-aware features produce more robust image representations. Furthermore, we study the complementarity between strictly local features and context-aware ones to produce an even more robust representation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.079;MILAB Approved no  
  Call Number Admin @ si @ MCG2014 Serial 2467  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: