|
Maria Elena Meza-de-Luna, Juan Ramon Terven Salinas, Bogdan Raducanu, & Joaquin Salas. (2019). A Social-Aware Assistant to support individuals with visual impairments during social interaction: A systematic requirements analysis. IJHC - International Journal of Human-Computer Studies, 122, 50–60.
Abstract: Visual impairment affects the normal course of activities in everyday life including mobility, education, employment, and social interaction. Most of the existing technical solutions devoted to empowering the visually impaired people are in the areas of navigation (obstacle avoidance), access to printed information and object recognition. Less effort has been dedicated so far in developing solutions to support social interactions. In this paper, we introduce a Social-Aware Assistant (SAA) that provides visually impaired people with cues to enhance their face-to-face conversations. The system consists of a perceptive component (represented by smartglasses with an embedded video camera) and a feedback component (represented by a haptic belt). When the vision system detects a head nodding, the belt vibrates, thus suggesting the user to replicate (mirror) the gesture. In our experiments, sighted persons interacted with blind people wearing the SAA. We instructed the former to mirror the noddings according to the vibratory signal, while the latter interacted naturally. After the face-to-face conversation, the participants had an interview to express their experience regarding the use of this new technological assistant. With the data collected during the experiment, we have assessed quantitatively and qualitatively the device usefulness and user satisfaction.
|
|
|
Bogdan Raducanu, & Jordi Vitria. (2008). Face Recognition by Artificial Vision Systems: A Cognitive Perspective. IJPRAI - International Journal of Pattern Recognition and Artificial Intelligence, 899–913.
|
|
|
Santiago Segui, Laura Igual, & Jordi Vitria. (2013). Bagged One Class Classifiers in the Presence of Outliers. IJPRAI - International Journal of Pattern Recognition and Artificial Intelligence, 27(5), 1350014–1350035.
Abstract: The problem of training classifiers only with target data arises in many applications where non-target data are too costly, difficult to obtain, or not available at all. Several one-class classification methods have been presented to solve this problem, but most of the methods are highly sensitive to the presence of outliers in the target class. Ensemble methods have therefore been proposed as a powerful way to improve the classification performance of binary/multi-class learning algorithms by introducing diversity into classifiers.
However, their application to one-class classification has been rather limited. In
this paper, we present a new ensemble method based on a non-parametric weighted bagging strategy for one-class classification, to improve accuracy in the presence of outliers. While the standard bagging strategy assumes a uniform data distribution, the method we propose here estimates a probability density based on a forest structure of the data. This assumption allows the estimation of data distribution from the computation of simple univariate and bivariate kernel densities. Experiments using original and noisy versions of 20 different datasets show that bagging ensemble methods applied to different one-class classifiers outperform base one-class classification methods. Moreover, we show that, in noisy versions of the datasets, the non-parametric weighted bagging strategy we propose outperforms the classical bagging strategy in a statistically significant way.
Keywords: One-class Classifier; Ensemble Methods; Bagging and Outliers
|
|
|
Bogdan Raducanu, Jordi Vitria, & Ales Leonardis. (2010). Online pattern recognition and machine learning techniques for computer-vision: Theory and applications. IMAVIS - Image and Vision Computing, 28(7), 1063–1064.
Abstract: (Editorial for the Special Issue on Online pattern recognition and machine learning techniques)
In real life, visual learning is supposed to be a continuous process. This paradigm has found its way also in artificial vision systems. There is an increasing trend in pattern recognition represented by online learning approaches, which aims at continuously updating the data representation when new information arrives. Starting with a minimal dataset, the initial knowledge is expanded by incorporating incoming instances, which may have not been previously available or foreseen at the system’s design stage. An interesting characteristic of this strategy is that the train and test phases take place simultaneously. Given the increasing interest in this subject, the aim of this special issue is to be a landmark event in the development of online learning techniques and their applications with the hope that it will capture the interest of a wider audience and will attract even more researchers. We received 19 contributions, of which 9 have been accepted for publication, after having been subjected to usual peer review process.
|
|
|
Julio C. S. Jacques Junior, Xavier Baro, & Sergio Escalera. (2018). Exploiting feature representations through similarity learning, post-ranking and ranking aggregation for person re-identification. IMAVIS - Image and Vision Computing, 79, 76–85.
Abstract: Person re-identification has received special attention by the human analysis community in the last few years. To address the challenges in this field, many researchers have proposed different strategies, which basically exploit either cross-view invariant features or cross-view robust metrics. In this work, we propose to exploit a post-ranking approach and combine different feature representations through ranking aggregation. Spatial information, which potentially benefits the person matching, is represented using a 2D body model, from which color and texture information are extracted and combined. We also consider background/foreground information, automatically extracted via Deep Decompositional Network, and the usage of Convolutional Neural Network (CNN) features. To describe the matching between images we use the polynomial feature map, also taking into account local and global information. The Discriminant Context Information Analysis based post-ranking approach is used to improve initial ranking lists. Finally, the Stuart ranking aggregation method is employed to combine complementary ranking lists obtained from different feature representations. Experimental results demonstrated that we improve the state-of-the-art on VIPeR and PRID450s datasets, achieving 67.21% and 75.64% on top-1 rank recognition rate, respectively, as well as obtaining competitive results on CUHK01 dataset.
|
|