2016 |
|
Pedro Martins, Paulo Carvalho, & Carlo Gatta. (2016). On the completeness of feature-driven maximally stable extremal regions. PRL - Pattern Recognition Letters, 74, 9–16.
Abstract: By definition, local image features provide a compact representation of the image in which most of the image information is preserved. This capability offered by local features has been overlooked, despite being relevant in many application scenarios. In this paper, we analyze and discuss the performance of feature-driven Maximally Stable Extremal Regions (MSER) in terms of the coverage of informative image parts (completeness). This type of features results from an MSER extraction on saliency maps in which features related to objects boundaries or even symmetry axes are highlighted. These maps are intended to be suitable domains for MSER detection, allowing this detector to provide a better coverage of informative image parts. Our experimental results, which were based on a large-scale evaluation, show that feature-driven MSER have relatively high completeness values and provide more complete sets than a traditional MSER detection even when sets of similar cardinality are considered.
Keywords: Local features; Completeness; Maximally Stable Extremal Regions
|
|
|
Pejman Rasti, Salma Samiei, Mary Agoyi, Sergio Escalera, & Gholamreza Anbarjafari. (2016). Robust non-blind color video watermarking using QR decomposition and entropy analysis. JVCIR - Journal of Visual Communication and Image Representation, 38, 838–847.
Abstract: Issues such as content identification, document and image security, audience measurement, ownership and copyright among others can be settled by the use of digital watermarking. Many recent video watermarking methods show drops in visual quality of the sequences. The present work addresses the aforementioned issue by introducing a robust and imperceptible non-blind color video frame watermarking algorithm. The method divides frames into moving and non-moving parts. The non-moving part of each color channel is processed separately using a block-based watermarking scheme. Blocks with an entropy lower than the average entropy of all blocks are subject to a further process for embedding the watermark image. Finally a watermarked frame is generated by adding moving parts to it. Several signal processing attacks are applied to each watermarked frame in order to perform experiments and are compared with some recent algorithms. Experimental results show that the proposed scheme is imperceptible and robust against common signal processing attacks.
Keywords: Video watermarking; QR decomposition; Discrete Wavelet Transformation; Chirp Z-transform; Singular value decomposition; Orthogonal–triangular decomposition
|
|
|
Santiago Segui, Michal Drozdzal, Guillem Pascual, Petia Radeva, Carolina Malagelada, Fernando Azpiroz, et al. (2016). Generic Feature Learning for Wireless Capsule Endoscopy Analysis. CBM - Computers in Biology and Medicine, 79, 163–172.
Abstract: The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase).
Keywords: Wireless capsule endoscopy; Deep learning; Feature learning; Motility analysis
|
|
|
Sergio Escalera, Jordi Gonzalez, Xavier Baro, & Jamie Shotton. (2016). Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1489–1491.
Abstract: The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others.
|
|
|
Sergio Escalera, Vassilis Athitsos, & Isabelle Guyon. (2016). Challenges in multimodal gesture recognition. JMLR - Journal of Machine Learning Research, 17, 1–54.
Abstract: This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011-2015. We began right at the start of the KinectTMrevolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands
of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
Keywords: Gesture Recognition; Time Series Analysis; Multimodal Data Analysis; Computer Vision; Pattern Recognition; Wearable sensors; Infrared Cameras; KinectTM
|
|