|   | 
Details
   web
Record Links
Author (up) Senmao Li; Joost Van de Weijer; Yaxing Wang; Fahad Shahbaz Khan; Meiqin Liu; Jian Yang edit  url
doi  openurl
Title 3D-Aware Multi-Class Image-to-Image Translation with NeRFs Type Conference Article
Year 2023 Publication 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 12652-12662  
Keywords  
Abstract Recent advances in 3D-aware generative models (3D-aware GANs) combined with Neural Radiance Fields (NeRF) have achieved impressive results. However no prior works investigate 3D-aware GANs for 3D consistent multiclass image-to-image (3D-aware 121) translation. Naively using 2D-121 translation methods suffers from unrealistic shape/identity change. To perform 3D-aware multiclass 121 translation, we decouple this learning process into a multiclass 3D-aware GAN step and a 3D-aware 121 translation step. In the first step, we propose two novel techniques: a new conditional architecture and an effective training strategy. In the second step, based on the well-trained multiclass 3D-aware GAN architecture, that preserves view-consistency, we construct a 3D-aware 121 translation system. To further reduce the view-consistency problems, we propose several new techniques, including a U-net-like adaptor network design, a hierarchical representation constrain and a relative regularization loss. In exten-sive experiments on two datasets, quantitative and qualitative results demonstrate that we successfully perform 3D-aware 121 translation with multi-view consistency. Code is available in 3DI2I.  
Address Vancouver; Canada; June 2023  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CVPR  
Notes LAMP;CIC Approved no  
Call Number Admin @ si @ LWW2023b Serial 3920  
Permanent link to this record