|   | 
Details
   web
Record Links
Author (up) Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit   pdf
url  doi
openurl 
Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop Abbreviated Journal  
Volume Issue Pages 3444-3454  
Keywords  
Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
Address Paris; France; October 2023  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ICCVW  
Notes LAMP; MILAB;MV;OR;CIC Approved no  
Call Number Admin @ si @ ARR2023 Serial 3841  
Permanent link to this record