|   | 
Details
   web
Record Links
Author (up) Shiqi Yang; Yaxing Wang; Kai Wang; Shangling Jui; Joost Van de Weijer edit  openurl
Title One Ring to Bring Them All: Towards Open-Set Recognition under Domain Shift Type Miscellaneous
Year 2022 Publication Arxiv Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract In this paper, we investigate model adaptation under domain and category shift, where the final goal is to achieve
(SF-UNDA), which addresses the situation where there exist both domain and category shifts between source and target domains. Under the SF-UNDA setting, the model cannot access source data anymore during target adaptation, which aims to address data privacy concerns. We propose a novel training scheme to learn a (
+1)-way classifier to predict the
source classes and the unknown class, where samples of only known source categories are available for training. Furthermore, for target adaptation, we simply adopt a weighted entropy minimization to adapt the source pretrained model to the unlabeled target domain without source data. In experiments, we show:
After source training, the resulting source model can get excellent performance for
;
After target adaptation, our method surpasses current UNDA approaches which demand source data during adaptation. The versatility to several different tasks strongly proves the efficacy and generalization ability of our method.
When augmented with a closed-set domain adaptation approach during target adaptation, our source-free method further outperforms the current state-of-the-art UNDA method by 2.5%, 7.2% and 13% on Office-31, Office-Home and VisDA respectively.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes LAMP; no proj;CIC Approved no  
Call Number Admin @ si @ YWW2022c Serial 3818  
Permanent link to this record