|   | 
Details
   web
Record Links
Author (up) Kai Wang; Chenshen Wu; Andrew Bagdanov; Xialei Liu; Shiqi Yang; Shangling Jui; Joost Van de Weijer edit  openurl
Title Positive Pair Distillation Considered Harmful: Continual Meta Metric Learning for Lifelong Object Re-Identification Type Conference Article
Year 2022 Publication 33rd British Machine Vision Conference Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Lifelong object re-identification incrementally learns from a stream of re-identification tasks. The objective is to learn a representation that can be applied to all tasks and that generalizes to previously unseen re-identification tasks. The main challenge is that at inference time the representation must generalize to previously unseen identities. To address this problem, we apply continual meta metric learning to lifelong object re-identification. To prevent forgetting of previous tasks, we use knowledge distillation and explore the roles of positive and negative pairs. Based on our observation that the distillation and metric losses are antagonistic, we propose to remove positive pairs from distillation to robustify model updates. Our method, called Distillation without Positive Pairs (DwoPP), is evaluated on extensive intra-domain experiments on person and vehicle re-identification datasets, as well as inter-domain experiments on the LReID benchmark. Our experiments demonstrate that DwoPP significantly outperforms the state-of-the-art.  
Address London; UK; November 2022  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference BMVC  
Notes LAMP; 600.147;CIC Approved no  
Call Number Admin @ si @ WWB2022 Serial 3794  
Permanent link to this record