|   | 
Details
   web
Record Links
Author (up) Hector Laria Mantecon; Yaxing Wang; Joost Van de Weijer; Bogdan Raducanu edit  doi
openurl 
Title Transferring Unconditional to Conditional GANs With Hyper-Modulation Type Conference Article
Year 2022 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract GANs have matured in recent years and are able to generate high-resolution, realistic images. However, the computational resources and the data required for the training of high-quality GANs are enormous, and the study of transfer learning of these models is therefore an urgent topic. Many of the available high-quality pretrained GANs are unconditional (like StyleGAN). For many applications, however, conditional GANs are preferable, because they provide more control over the generation process, despite often suffering more training difficulties. Therefore, in this paper, we focus on transferring from high-quality pretrained unconditional GANs to conditional GANs. This requires architectural adaptation of the pretrained GAN to perform the conditioning. To this end, we propose hyper-modulated generative networks that allow for shared and complementary supervision. To prevent the additional weights of the hypernetwork to overfit, with subsequent mode collapse on small target domains, we introduce a self-initialization procedure that does not require any real data to initialize the hypernetwork parameters. To further improve the sample efficiency of the transfer, we apply contrastive learning in the discriminator, which effectively works on very limited batch sizes. In extensive experiments, we validate the efficiency of the hypernetworks, self-initialization and contrastive loss for knowledge transfer on standard benchmarks.  
Address New Orleans; USA; June 2022  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CVPRW  
Notes LAMP; 600.147; 602.200;MV;OR;CIC Approved no  
Call Number LWW2022a Serial 3785  
Permanent link to this record