|   | 
Details
   web
Record Links
Author (up) Jon Almazan; Bojana Gajic; Naila Murray; Diane Larlus edit  doi
openurl 
Title Re-ID done right: towards good practices for person re-identification Type Miscellaneous
Year 2018 Publication Arxiv Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.  
Address January 2018  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Serial 3711  
Permanent link to this record