|   | 
Details
   web
Record Links
Author (up) Alex Gomez-Villa; Bartlomiej Twardowski; Lu Yu; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
Title Continually Learning Self-Supervised Representations With Projected Functional Regularization Type Conference Article
Year 2022 Publication CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) Abbreviated Journal  
Volume Issue Pages 3866-3876  
Keywords Computer vision; Conferences; Self-supervised learning; Image representation; Pattern recognition  
Abstract Recent self-supervised learning methods are able to learn high-quality image representations and are closing the gap with supervised approaches. However, these methods are unable to acquire new knowledge incrementally – they are, in fact, mostly used only as a pre-training phase over IID data. In this work we investigate self-supervised methods in continual learning regimes without any replay
mechanism. We show that naive functional regularization,also known as feature distillation, leads to lower plasticity and limits continual learning performance. Instead, we propose Projected Functional Regularization in which a separate temporal projection network ensures that the newly learned feature space preserves information of the previous one, while at the same time allowing for the learning of new features. This prevents forgetting while maintaining the plasticity of the learner. Comparison with other incremental learning approaches applied to self-supervision demonstrates that our method obtains competitive performance in
different scenarios and on multiple datasets.
 
Address New Orleans, USA; 20 June 2022  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CVPRW  
Notes LAMP: 600.147; 600.120;CIC Approved no  
Call Number Admin @ si @ GTY2022 Serial 3704  
Permanent link to this record