|   | 
Details
   web
Record Links
Author (up) Kai Wang; Xialei Liu; Andrew Bagdanov; Luis Herranz; Shangling Jui; Joost Van de Weijer edit   pdf
doi  openurl
Title Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image Recognition Type Conference Article
Year 2022 Publication CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) Abbreviated Journal  
Volume Issue Pages 3728-3738  
Keywords Training; Computer vision; Image recognition; Upper bound; Conferences; Pattern recognition; Task analysis  
Abstract In this paper we consider the problem of incremental meta-learning in which classes are presented incrementally in discrete tasks. We propose Episodic Replay Distillation (ERD), that mixes classes from the current task with exemplars from previous tasks when sampling episodes for meta-learning. To allow the training to benefit from a large as possible variety of classes, which leads to more gener-
alizable feature representations, we propose the cross-task meta loss. Furthermore, we propose episodic replay distillation that also exploits exemplars for improved knowledge distillation. Experiments on four datasets demonstrate that ERD surpasses the state-of-the-art. In particular, on the more challenging one-shot, long task sequence scenarios, we reduce the gap between Incremental Meta-Learning and
the joint-training upper bound from 3.5% / 10.1% / 13.4% / 11.7% with the current state-of-the-art to 2.6% / 2.9% / 5.0% / 0.2% with our method on Tiered-ImageNet / Mini-ImageNet / CIFAR100 / CUB, respectively.
 
Address New Orleans, USA; 20 June 2022  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CVPRW  
Notes LAMP; 600.147;CIC Approved no  
Call Number Admin @ si @ WLB2022 Serial 3686  
Permanent link to this record