|   | 
Details
   web
Record Links
Author (up) Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz; Shangling Jui edit   pdf
doi  openurl
Title Generalized Source-free Domain Adaptation Type Conference Article
Year 2021 Publication 19th IEEE International Conference on Computer Vision Abbreviated Journal  
Volume Issue Pages 8958-8967  
Keywords  
Abstract Domain adaptation (DA) aims to transfer the knowledge learned from a source domain to an unlabeled target domain. Some recent works tackle source-free domain adaptation (SFDA) where only a source pre-trained model is available for adaptation to the target domain. However, those methods do not consider keeping source performance which is of high practical value in real world applications. In this paper, we propose a new domain adaptation paradigm called Generalized Source-free Domain Adaptation (G-SFDA), where the learned model needs to perform well on both the target and source domains, with only access to current unlabeled target data during adaptation. First, we propose local structure clustering (LSC), aiming to cluster the target features with its semantically similar neighbors, which successfully adapts the model to the target domain in the absence of source data. Second, we propose sparse domain attention (SDA), it produces a binary domain specific attention to activate different feature channels for different domains, meanwhile the domain attention will be utilized to regularize the gradient during adaptation to keep source information. In the experiments, for target performance our method is on par with or better than existing DA and SFDA methods, specifically it achieves state-of-the-art performance (85.4%) on VisDA, and our method works well for all domains after adapting to single or multiple target domains.  
Address Virtual; October 2021  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes LAMP; 600.120; 600.147;CIC Approved no  
Call Number Admin @ si @ YWW2021 Serial 3605  
Permanent link to this record