|   | 
Details
   web
Record Links
Author (up) Yaxing Wang; Hector Laria Mantecon; Joost Van de Weijer; Laura Lopez-Fuentes; Bogdan Raducanu edit   pdf
doi  openurl
Title TransferI2I: Transfer Learning for Image-to-Image Translation from Small Datasets Type Conference Article
Year 2021 Publication 19th IEEE International Conference on Computer Vision Abbreviated Journal  
Volume Issue Pages 13990-13999  
Keywords  
Abstract Image-to-image (I2I) translation has matured in recent years and is able to generate high-quality realistic images. However, despite current success, it still faces important challenges when applied to small domains. Existing methods use transfer learning for I2I translation, but they still require the learning of millions of parameters from scratch. This drawback severely limits its application on small domains. In this paper, we propose a new transfer learning for I2I translation (TransferI2I). We decouple our learning process into the image generation step and the I2I translation step. In the first step we propose two novel techniques: source-target initialization and self-initialization of the adaptor layer. The former finetunes the pretrained generative model (e.g., StyleGAN) on source and target data. The latter allows to initialize all non-pretrained network parameters without the need of any data. These techniques provide a better initialization for the I2I translation step. In addition, we introduce an auxiliary GAN that further facilitates the training of deep I2I systems even from small datasets. In extensive experiments on three datasets, (Animal faces, Birds, and Foods), we show that we outperform existing methods and that mFID improves on several datasets with over 25 points.  
Address Virtual; October 2021  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ICCV  
Notes LAMP; 600.147; 602.200; 600.120;MV;OR;CIC Approved no  
Call Number Admin @ si @ WLW2021 Serial 3604  
Permanent link to this record