|   | 
Details
   web
Record Links
Author (up) Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz edit   pdf
openurl 
Title Unsupervised Domain Adaptation without Source Data by Casting a BAIT Type Miscellaneous
Year 2020 Publication Arxiv Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract arXiv:2010.12427
Unsupervised domain adaptation (UDA) aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. Existing UDA methods require access to source data during adaptation, which may not be feasible in some real-world applications. In this paper, we address the source-free unsupervised domain adaptation (SFUDA) problem, where only the source model is available during the adaptation. We propose a method named BAIT to address SFUDA. Specifically, given only the source model, with the source classifier head fixed, we introduce a new learnable classifier. When adapting to the target domain, class prototypes of the new added classifier will act as a bait. They will first approach the target features which deviate from prototypes of the source classifier due to domain shift. Then those target features are pulled towards the corresponding prototypes of the source classifier, thus achieving feature alignment with the source classifier in the absence of source data. Experimental results show that the proposed method achieves state-of-the-art performance on several benchmark datasets compared with existing UDA and SFUDA methods.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes LAMP; 600.120;CIC Approved no  
Call Number Admin @ si @ YWW2020 Serial 3539  
Permanent link to this record