|   | 
Details
   web
Record Links
Author (up) Lu Yu; Vacit Oguz Yazici; Xialei Liu; Joost Van de Weijer; Yongmei Cheng; Arnau Ramisa edit   pdf
url  doi
openurl 
Title Learning Metrics from Teachers: Compact Networks for Image Embedding Type Conference Article
Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 2907-2916  
Keywords  
Abstract Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the
communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be
used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5% to 44.6%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semisupervised learning and cross quality distillation.
 
Address Long beach; California; june 2019  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CVPR  
Notes LAMP; 600.109; 600.120;CIC Approved no  
Call Number Admin @ si @ YYL2019 Serial 3281  
Permanent link to this record