|   | 
Details
   web
Record Links
Author (up) Marc Masana; Joost Van de Weijer; Luis Herranz;Andrew Bagdanov; Jose Manuel Alvarez edit   pdf
doi  openurl
Title Domain-adaptive deep network compression Type Conference Article
Year 2017 Publication 17th IEEE International Conference on Computer Vision Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer.
We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing.
We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally
remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone – with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.
 
Address Venice; Italy; October 2017  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ICCV  
Notes LAMP; 601.305; 600.106; 600.120;CIC;ADAS Approved no  
Call Number Admin @ si @ Serial 3034  
Permanent link to this record