|   | 
Details
   web
Record Links
Author (up) Sandra Jimenez; Xavier Otazu; Valero Laparra; Jesus Malo edit   pdf
doi  openurl
Title Chromatic induction and contrast masking: similar models, different goals? Type Conference Article
Year 2013 Publication Human Vision and Electronic Imaging XVIII Abbreviated Journal  
Volume 8651 Issue Pages  
Keywords  
Abstract Normalization of signals coming from linear sensors is an ubiquitous mechanism of neural adaptation.1 Local interaction between sensors tuned to a particular feature at certain spatial position and neighbor sensors explains a wide range of psychophysical facts including (1) masking of spatial patterns, (2) non-linearities of motion sensors, (3) adaptation of color perception, (4) brightness and chromatic induction, and (5) image quality assessment. Although the above models have formal and qualitative similarities, it does not necessarily mean that the mechanisms involved are pursuing the same statistical goal. For instance, in the case of chromatic mechanisms (disregarding spatial information), different parameters in the normalization give rise to optimal discrimination or adaptation, and different non-linearities may give rise to error minimization or component independence. In the case of spatial sensors (disregarding color information), a number of studies have pointed out the benefits of masking in statistical independence terms. However, such statistical analysis has not been performed for spatio-chromatic induction models where chromatic perception depends on spatial configuration. In this work we investigate whether successful spatio-chromatic induction models,6 increase component independence similarly as previously reported for masking models. Mutual information analysis suggests that seeking an efficient chromatic representation may explain the prevalence of induction effects in spatially simple images. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.  
Address San Francisco CA; USA; February 2013  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference HVEI  
Notes CIC Approved no  
Call Number Admin @ si @ JOL2013 Serial 2240  
Permanent link to this record