toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Juan Ignacio Toledo edit  isbn
openurl 
  Title Information Extraction from Heterogeneous Handwritten Documents Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this thesis we explore information Extraction from totally or partially handwritten documents. Basically we are dealing with two different application scenarios. The first scenario are modern highly structured documents like forms. In this kind of documents, the semantic information is encoded in different fields with a pre-defined location in the document, therefore, information extraction becomes roughly equivalent to transcription. The second application scenario are loosely structured totally handwritten documents, besides transcribing them, we need to assign a semantic label, from a set of known values to the handwritten words.
In both scenarios, transcription is an important part of the information extraction. For that reason in this thesis we present two methods based on Neural Networks, to transcribe handwritten text.In order to tackle the challenge of loosely structured documents, we have produced a benchmark, consisting of a dataset, a defined set of tasks and a metric, that was presented to the community as an international competition. Also, we propose different models based on Convolutional and Recurrent neural networks that are able to transcribe and assign different semantic labels to each handwritten words, that is, able to perform Information Extraction.
 
  Address July 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-7-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ Tol2019 Serial 3389  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: