Abstract: Assessing Optical Flow (OF) quality is essential for its further use in reliable decision support systems. The absence of ground truth in such situations leads to the computation of OF Confidence Measures (CM) obtained from either input or output data. A fair comparison across the capabilities of the different CM for bounding OF error is required in order to choose the best OF-CM pair for discarding points where OF computation is not reliable. This paper presents a statistical probabilistic framework for assessing the quality of a given CM. Our quality measure is given in terms of the percentage of pixels whose OF error bound can not be determined by CM values. We also provide statistical tools for the computation of CM values that ensures a given accuracy of the flow field.