2023 |
|
Diego Velazquez, Pau Rodriguez, Alexandre Lacoste, Issam H. Laradji, Xavier Roca, & Jordi Gonzalez. (2023). Evaluating Counterfactual Explainers. TMLR - Transactions on Machine Learning Research.
Abstract: Explainability methods have been widely used to provide insight into the decisions made by statistical models, thus facilitating their adoption in various domains within the industry. Counterfactual explanation methods aim to improve our understanding of a model by perturbing samples in a way that would alter its response in an unexpected manner. This information is helpful for users and for machine learning practitioners to understand and improve their models. Given the value provided by counterfactual explanations, there is a growing interest in the research community to investigate and propose new methods. However, we identify two issues that could hinder the progress in this field. (1) Existing metrics do not accurately reflect the value of an explainability method for the users. (2) Comparisons between methods are usually performed with datasets like CelebA, where images are annotated with attributes that do not fully describe them and with subjective attributes such as ``Attractive''. In this work, we address these problems by proposing an evaluation method with a principled metric to evaluate and compare different counterfactual explanation methods. The evaluation method is based on a synthetic dataset where images are fully described by their annotated attributes. As a result, we are able to perform a fair comparison of multiple explainability methods in the recent literature, obtaining insights about their performance. We make the code public for the benefit of the research community.
Keywords: Explainability; Counterfactuals; XAI
|
|
|
Parichehr Behjati, Pau Rodriguez, Carles Fernandez, Isabelle Hupont, Armin Mehri, & Jordi Gonzalez. (2023). Single image super-resolution based on directional variance attention network. PR - Pattern Recognition, 133, 108997.
Abstract: Recent advances in single image super-resolution (SISR) explore the power of deep convolutional neural networks (CNNs) to achieve better performance. However, most of the progress has been made by scaling CNN architectures, which usually raise computational demands and memory consumption. This makes modern architectures less applicable in practice. In addition, most CNN-based SR methods do not fully utilize the informative hierarchical features that are helpful for final image recovery. In order to address these issues, we propose a directional variance attention network (DiVANet), a computationally efficient yet accurate network for SISR. Specifically, we introduce a novel directional variance attention (DiVA) mechanism to capture long-range spatial dependencies and exploit inter-channel dependencies simultaneously for more discriminative representations. Furthermore, we propose a residual attention feature group (RAFG) for parallelizing attention and residual block computation. The output of each residual block is linearly fused at the RAFG output to provide access to the whole feature hierarchy. In parallel, DiVA extracts most relevant features from the network for improving the final output and preventing information loss along the successive operations inside the network. Experimental results demonstrate the superiority of DiVANet over the state of the art in several datasets, while maintaining relatively low computation and memory footprint. The code is available at https://github.com/pbehjatii/DiVANet.
|
|
|
Qingshan Chen, Zhenzhen Quan, Yifan Hu, Yujun Li, Zhi Liu, & Mikhail Mozerov. (2023). MSIF: multi-spectrum image fusion method for cross-modality person re-identification. IJMLC - International Journal of Machine Learning and Cybernetics, .
Abstract: Sketch-RGB cross-modality person re-identification (ReID) is a challenging task that aims to match a sketch portrait drawn by a professional artist with a full-body photo taken by surveillance equipment to deal with situations where the monitoring equipment is damaged at the accident scene. However, sketch portraits only provide highly abstract frontal body contour information and lack other important features such as color, pose, behavior, etc. The difference in saliency between the two modalities brings new challenges to cross-modality person ReID. To overcome this problem, this paper proposes a novel dual-stream model for cross-modality person ReID, which is able to mine modality-invariant features to reduce the discrepancy between sketch and camera images end-to-end. More specifically, we propose a multi-spectrum image fusion (MSIF) method, which aims to exploit the image appearance changes brought by multiple spectrums and guide the network to mine modality-invariant commonalities during training. It only processes the spectrum of the input images without adding additional calculations and model complexity, which can be easily integrated into other models. Moreover, we introduce a joint structure via a generalized mean pooling (GMP) layer and a self-attention (SA) mechanism to balance background and texture information and obtain the regional features with a large amount of information in the image. To further shrink the intra-class distance, a weighted regularized triplet (WRT) loss is developed without introducing additional hyperparameters. The model was first evaluated on the PKU Sketch ReID dataset, and extensive experimental results show that the Rank-1/mAP accuracy of our method is 87.00%/91.12%, reaching the current state-of-the-art performance. To further validate the effectiveness of our approach in handling cross-modality person ReID, we conducted experiments on two commonly used IR-RGB datasets (SYSU-MM01 and RegDB). The obtained results show that our method achieves competitive performance. These results confirm the ability of our method to effectively process images from different modalities.
|
|
|
Qingshan Chen, Zhenzhen Quan, Yujun Li, Chao Zhai, & Mikhail Mozerov. (2023). An Unsupervised Domain Adaption Approach for Cross-Modality RGB-Infrared Person Re-Identification. IEEE-SENS - IEEE Sensors Journal, 23(24).
Abstract: Dual-camera systems commonly employed in surveillance serve as the foundation for RGB-infrared (IR) cross-modality person re-identification (ReID). However, significant modality differences give rise to inferior performance compared to single-modality scenarios. Furthermore, most existing studies in this area rely on supervised training with meticulously labeled datasets. Labeling RGB-IR image pairs is more complex than labeling conventional image data, and deploying pretrained models on unlabeled datasets can lead to catastrophic performance degradation. In contrast to previous solutions that focus solely on cross-modality or domain adaptation issues, this article presents an end-to-end unsupervised domain adaptation (UDA) framework for the cross-modality person ReID, which can simultaneously address both of these challenges. This model employs source domain classes, target domain clusters, and unclustered instance samples for the training, maximizing the comprehensive use of the dataset. Moreover, it addresses the problem of mismatched clustering labels between the two modalities in the target domain by incorporating a label matching module that reassigns reliable clusters with labels, ensuring correspondence between different modality labels. We construct the loss function by incorporating distinctiveness loss and multiplicity loss, both of which are determined by the similarity of neighboring features in the predicted feature space and the difference between distant features. This approach enables efficient feature clustering and cluster class assignment to occur concurrently. Eight UDA cross-modality person ReID experiments are conducted on three real datasets and six synthetic datasets. The experimental results unequivocally demonstrate that the proposed model outperforms the existing state-of-the-art algorithms to a significant degree. Notably, in RegDB → RegDB_light, the Rank-1 accuracy exhibits a remarkable improvement of 8.24%.
Keywords: Q. Chen, Z. Quan, Y. Li, C. Zhai and M. G. Mozerov
|
|
|
Wenjuan Gong, Yue Zhang, Wei Wang, Peng Cheng, & Jordi Gonzalez. (2023). Meta-MMFNet: Meta-learning-based Multi-model Fusion Network for Micro-expression Recognition. TMCCA - ACM Transactions on Multimedia Computing, Communications, and Applications, 20(2), 1–20.
Abstract: Despite its wide applications in criminal investigations and clinical communications with patients suffering from autism, automatic micro-expression recognition remains a challenging problem because of the lack of training data and imbalanced classes problems. In this study, we proposed a meta-learning-based multi-model fusion network (Meta-MMFNet) to solve the existing problems. The proposed method is based on the metric-based meta-learning pipeline, which is specifically designed for few-shot learning and is suitable for model-level fusion. The frame difference and optical flow features were fused, deep features were extracted from the fused feature, and finally in the meta-learning-based framework, weighted sum model fusion method was applied for micro-expression classification. Meta-MMFNet achieved better results than state-of-the-art methods on four datasets. The code is available at https://github.com/wenjgong/meta-fusion-based-method.
|
|