2022 |
|
Ana Garcia Rodriguez, Yael Tudela, Henry Cordova, S. Carballal, I. Ordas, L. Moreira, et al. (2022). First in Vivo Computer-Aided Diagnosis of Colorectal Polyps using White Light Endoscopy. END - Endoscopy, 54.
|
|
|
Ana Garcia Rodriguez, Yael Tudela, Henry Cordova, S. Carballal, I. Ordas, L. Moreira, et al. (2022). In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy. EIO - Endoscoppy International Open, 10(9), E1201–E1207.
Abstract: Background and study aims Artificial intelligence is currently able to accurately predict the histology of colorectal polyps. However, systems developed to date use complex optical technologies and have not been tested in vivo. The objective of this study was to evaluate the efficacy of a new deep learning-based optical diagnosis system, ATENEA, in a real clinical setting using only high-definition white light endoscopy (WLE) and to compare its performance with endoscopists. Methods ATENEA was prospectively tested in real life on consecutive polyps detected in colorectal cancer screening colonoscopies at Hospital Clínic. No images were discarded, and only WLE was used. The in vivo ATENEA's prediction (adenoma vs non-adenoma) was compared with the prediction of four staff endoscopists without specific training in optical diagnosis for the study purposes. Endoscopists were blind to the ATENEA output. Histology was the gold standard. Results Ninety polyps (median size: 5 mm, range: 2-25) from 31 patients were included of which 69 (76.7 %) were adenomas. ATENEA correctly predicted the histology in 63 of 69 (91.3 %, 95 % CI: 82 %-97 %) adenomas and 12 of 21 (57.1 %, 95 % CI: 34 %-78 %) non-adenomas while endoscopists made correct predictions in 52 of 69 (75.4 %, 95 % CI: 60 %-85 %) and 20 of 21 (95.2 %, 95 % CI: 76 %-100 %), respectively. The global accuracy was 83.3 % (95 % CI: 74%-90 %) and 80 % (95 % CI: 70 %-88 %) for ATENEA and endoscopists, respectively. Conclusion ATENEA can accurately be used for in vivo characterization of colorectal polyps, enabling the endoscopist to make direct decisions. ATENEA showed a global accuracy similar to that of endoscopists despite an unsatisfactory performance for non-adenomatous lesions.
|
|
|
Meysam Madadi, Sergio Escalera, Xavier Baro, & Jordi Gonzalez. (2022). End-to-end Global to Local CNN Learning for Hand Pose Recovery in Depth data. IETCV - IET Computer Vision, 16(1), 50–66.
Abstract: Despite recent advances in 3D pose estimation of human hands, especially thanks to the advent of CNNs and depth cameras, this task is still far from being solved. This is mainly due to the highly non-linear dynamics of fingers, which make hand model training a challenging task. In this paper, we exploit a novel hierarchical tree-like structured CNN, in which branches are trained to become specialized in predefined subsets of hand joints, called local poses. We further fuse local pose features, extracted from hierarchical CNN branches, to learn higher order dependencies among joints in the final pose by end-to-end training. Lastly, the loss function used is also defined to incorporate appearance and physical constraints about doable hand motion and deformation. Finally, we introduce a non-rigid data augmentation approach to increase the amount of training depth data. Experimental results suggest that feeding a tree-shaped CNN, specialized in local poses, into a fusion network for modeling joints correlations and dependencies, helps to increase the precision of final estimations, outperforming state-of-the-art results on NYU and SyntheticHand datasets.
Keywords: Computer vision; data acquisition; human computer interaction; learning (artificial intelligence); pose estimation
|
|
|
Parichehr Behjati Ardakani, Pau Rodriguez, Carles Fernandez, Armin Mehri, Xavier Roca, Seiichi Ozawa, et al. (2022). Frequency-based Enhancement Network for Efficient Super-Resolution. ACCESS - IEEE Access, 10, 57383–57397.
Abstract: Recently, deep convolutional neural networks (CNNs) have provided outstanding performance in single image super-resolution (SISR). Despite their remarkable performance, the lack of high-frequency information in the recovered images remains a core problem. Moreover, as the networks increase in depth and width, deep CNN-based SR methods are faced with the challenge of computational complexity in practice. A promising and under-explored solution is to adapt the amount of compute based on the different frequency bands of the input. To this end, we present a novel Frequency-based Enhancement Block (FEB) which explicitly enhances the information of high frequencies while forwarding low-frequencies to the output. In particular, this block efficiently decomposes features into low- and high-frequency and assigns more computation to high-frequency ones. Thus, it can help the network generate more discriminative representations by explicitly recovering finer details. Our FEB design is simple and generic and can be used as a direct replacement of commonly used SR blocks with no need to change network architectures. We experimentally show that when replacing SR blocks with FEB we consistently improve the reconstruction error, while reducing the number of parameters in the model. Moreover, we propose a lightweight SR model — Frequency-based Enhancement Network (FENet) — based on FEB that matches the performance of larger models. Extensive experiments demonstrate that our proposal performs favorably against the state-of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time. The code is available at https://github.com/pbehjatii/FENet
Keywords: Deep learning; Frequency-based methods; Lightweight architectures; Single image super-resolution
|
|
|
Wenjuan Gong, Zhang Yue, Wei Wang, Cheng Peng, & Jordi Gonzalez. (2022). Meta-MMFNet: Meta-Learning Based Multi-Model Fusion Network for Micro-Expression Recognition. ACMTMC - ACM Transactions on Multimedia Computing, Communications, and Applications, .
Abstract: Despite its wide applications in criminal investigations and clinical communications with patients suffering from autism, automatic micro-expression recognition remains a challenging problem because of the lack of training data and imbalanced classes problems. In this study, we proposed a meta-learning based multi-model fusion network (Meta-MMFNet) to solve the existing problems. The proposed method is based on the metric-based meta-learning pipeline, which is specifically designed for few-shot learning and is suitable for model-level fusion. The frame difference and optical flow features were fused, deep features were extracted from the fused feature, and finally in the meta-learning-based framework, weighted sum model fusion method was applied for micro-expression classification. Meta-MMFNet achieved better results than state-of-the-art methods on four datasets. The code is available at https://github.com/wenjgong/meta-fusion-based-method.
Keywords: Feature Fusion; Model Fusion; Meta-Learning; Micro-Expression Recognition
|
|