|
Marc Oliu, Ciprian Corneanu, Kamal Nasrollahi, Olegs Nikisins, Sergio Escalera, Yunlian Sun, et al. (2016). Improved RGB-D-T based Face Recognition. BIO - IET Biometrics, 5(4), 297–303.
Abstract: Reliable facial recognition systems are of crucial importance in various applications from entertainment to security. Thanks to the deep-learning concepts introduced in the field, a significant improvement in the performance of the unimodal facial recognition systems has been observed in the recent years. At the same time a multimodal facial recognition is a promising approach. This study combines the latest successes in both directions by applying deep learning convolutional neural networks (CNN) to the multimodal RGB, depth, and thermal (RGB-D-T) based facial recognition problem outperforming previously published results. Furthermore, a late fusion of the CNN-based recognition block with various hand-crafted features (local binary patterns, histograms of oriented gradients, Haar-like rectangular features, histograms of Gabor ordinal measures) is introduced, demonstrating even better recognition performance on a benchmark RGB-D-T database. The obtained results in this study show that the classical engineered features and CNN-based features can complement each other for recognition purposes.
|
|
|
Anastasios Doulamis, Nikolaos Doulamis, Marco Bertini, Jordi Gonzalez, & Thomas B. Moeslund. (2016). Introduction to the Special Issue on the Analysis and Retrieval of Events/Actions and Workflows in Video Streams. MTAP - Multimedia Tools and Applications, 75(22), 14985–14990.
|
|
|
Eloi Puertas, Sergio Escalera, & Oriol Pujol. (2015). Generalized Multi-scale Stacked Sequential Learning for Multi-class Classification. PAA - Pattern Analysis and Applications, 18(2), 247–261.
Abstract: In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches.
Keywords: Stacked sequential learning; Multi-scale; Error-correct output codes (ECOC); Contextual classification
|
|
|
Mohammad Ali Bagheri, Qigang Gao, & Sergio Escalera. (2015). Combining Local and Global Learners in the Pairwise Multiclass Classification. PAA - Pattern Analysis and Applications, 18(4), 845–860.
Abstract: Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.
Keywords: Multiclass classification; Pairwise approach; One-versus-one
|
|
|
Victor Ponce, Sergio Escalera, Marc Perez, Oriol Janes, & Xavier Baro. (2015). Non-Verbal Communication Analysis in Victim-Offender Mediations. PRL - Pattern Recognition Letters, 67(1), 19–27.
Abstract: We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.
Keywords: Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning
|
|