2019 |
|
Juanjo Rubio, Takahiro Kashiwa, Teera Laiteerapong, Wenlong Deng, Kohei Nagai, Sergio Escalera, et al. (2019). Multi-class structural damage segmentation using fully convolutional networks. COMPUTIND - Computers in Industry, 112, 103121.
Abstract: Structural Health Monitoring (SHM) has benefited from computer vision and more recently, Deep Learning approaches, to accurately estimate the state of deterioration of infrastructure. In our work, we test Fully Convolutional Networks (FCNs) with a dataset of deck areas of bridges for damage segmentation. We create a dataset for delamination and rebar exposure that has been collected from inspection records of bridges in Niigata Prefecture, Japan. The dataset consists of 734 images with three labels per image, which makes it the largest dataset of images of bridge deck damage. This data allows us to estimate the performance of our method based on regions of agreement, which emulates the uncertainty of in-field inspections. We demonstrate the practicality of FCNs to perform automated semantic segmentation of surface damages. Our model achieves a mean accuracy of 89.7% for delamination and 78.4% for rebar exposure, and a weighted F1 score of 81.9%.
Keywords: Bridge damage detection; Deep learning; Semantic segmentation
|
|
|
Mohammad Naser Sabet, Pau Buch Cardona, Egils Avots, Kamal Nasrollahi, Sergio Escalera, Thomas B. Moeslund, et al. (2019). Privacy-Constrained Biometric System for Non-cooperative Users. ENTROPY - Entropy, 21(11), 1033.
Abstract: With the consolidation of the new data protection regulation paradigm for each individual within the European Union (EU), major biometric technologies are now confronted with many concerns related to user privacy in biometric deployments. When individual biometrics are disclosed, the sensitive information about his/her personal data such as financial or health are at high risk of being misused or compromised. This issue can be escalated considerably over scenarios of non-cooperative users, such as elderly people residing in care homes, with their inability to interact conveniently and securely with the biometric system. The primary goal of this study is to design a novel database to investigate the problem of automatic people recognition under privacy constraints. To do so, the collected data-set contains the subject’s hand and foot traits and excludes the face biometrics of individuals in order to protect their privacy. We carried out extensive simulations using different baseline methods, including deep learning. Simulation results show that, with the spatial features extracted from the subject sequence in both individual hand or foot videos, state-of-the-art deep models provide promising recognition performance.
Keywords: biometric recognition; multimodal-based human identification; privacy; deep learning
|
|
|
Reza Azad, Maryam Asadi-Aghbolaghi, Shohreh Kasaei, & Sergio Escalera. (2019). Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps. TCSVT - IEEE Transactions on Circuits and Systems for Video Technology, 29(6), 1729–1740.
Abstract: Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.
Keywords: Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding
|
|
2018 |
|
Albert Clapes, Alex Pardo, Oriol Pujol, & Sergio Escalera. (2018). Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly. MVAP - Machine Vision and Applications, 29(5), 765–788.
Abstract: We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.
Keywords: Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology
|
|
|
Ester Fornells, Manuel De Armas, Maria Teresa Anguera, Sergio Escalera, Marcos Antonio Catalán, & Josep Moya. (2018). Desarrollo del proyecto del Consell Comarcal del Baix Llobregat “Buen Trato a las personas mayores y aquellas en situación de fragilidad con sufrimiento emocional: Hacia un envejecimiento saludable”. Informaciones Psiquiatricas, 47–59.
|
|