|
Mohammad N. S. Jahromi, Pau Buch Cardona, Egils Avots, Kamal Nasrollahi, Sergio Escalera, Thomas B. Moeslund, et al. (2019). Privacy-Constrained Biometric System for Non-cooperative Users. ENTROPY - Entropy, 21(11), 1033.
Abstract: With the consolidation of the new data protection regulation paradigm for each individual within the European Union (EU), major biometric technologies are now confronted with many concerns related to user privacy in biometric deployments. When individual biometrics are disclosed, the sensitive information about his/her personal data such as financial or health are at high risk of being misused or compromised. This issue can be escalated considerably over scenarios of non-cooperative users, such as elderly people residing in care homes, with their inability to interact conveniently and securely with the biometric system. The primary goal of this study is to design a novel database to investigate the problem of automatic people recognition under privacy constraints. To do so, the collected data-set contains the subject’s hand and foot traits and excludes the face biometrics of individuals in order to protect their privacy. We carried out extensive simulations using different baseline methods, including deep learning. Simulation results show that, with the spatial features extracted from the subject sequence in both individual hand or foot videos, state-of-the-art deep models provide promising recognition performance.
Keywords: biometric recognition; multimodal-based human identification; privacy; deep learning
|
|
|
Adrien Pavao, Isabelle Guyon, Anne-Catherine Letournel, Dinh-Tuan Tran, Xavier Baro, Hugo Jair Escalante, et al. (2023). CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges. JMLR - Journal of Machine Learning Research, .
Abstract: CodaLab Competitions is an open source web platform designed to help data scientists and research teams to crowd-source the resolution of machine learning problems through the organization of competitions, also called challenges or contests. CodaLab Competitions provides useful features such as multiple phases, results and code submissions, multi-score leaderboards, and jobs running
inside Docker containers. The platform is very flexible and can handle large scale experiments, by allowing organizers to upload large datasets and provide their own CPU or GPU compute workers.
|
|
|
Zahra Raisi-Estabragh, Carlos Martin-Isla, Louise Nissen, Liliana Szabo, Victor M. Campello, Sergio Escalera, et al. (2023). Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset. FCM - Frontiers in Cardiovascular Medicine, .
|
|
|
Carlos Martin-Isla, Victor M Campello, Cristian Izquierdo, Kaisar Kushibar, Carla Sendra Balcells, Polyxeni Gkontra, et al. (2023). Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge. JBHI - IEEE Journal of Biomedical and Health Informatics, 27(7), 3302–3313.
Abstract: In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.
|
|
|
Yunan Li, Jun Wan, Qiguang Miao, Sergio Escalera, Huijuan Fang, Huizhou Chen, et al. (2020). CR-Net: A Deep Classification-Regression Network for Multimodal Apparent Personality Analysis. IJCV - International Journal of Computer Vision, 128, 2763–2780.
Abstract: First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art.
|
|