|
Jelena Gorbova, Egils Avots, Iiris Lusi, Mark Fishel, Sergio Escalera, & Gholamreza Anbarjafari. (2018). Integrating Vision and Language for First Impression Personality Analysis. MULTIMEDIA - IEEE Multimedia, 25(2), 24–33.
Abstract: The authors present a novel methodology for analyzing integrated audiovisual signals and language to assess a persons personality. An evaluation of their proposed multimodal method using a job candidate screening system that predicted five personality traits from a short video demonstrates the methods effectiveness.
|
|
|
Sergio Escalera, Ana Puig, Oscar Amoros, & Maria Salamo. (2011). Intelligent GPGPU Classification in Volume Visualization: a framework based on Error-Correcting Output Codes. CGF - Computer Graphics Forum, 30(7), 2107–2115.
Abstract: IF JCR 1.455 2010 25/99
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling. We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage. To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different data sets for several volume structures shows high computational performance and classification accuracy.
|
|
|
Sergio Escalera, Oriol Pujol, J. Mauri, & Petia Radeva. (2009). Intravascular Ultrasound Tissue Characterization with Sub-class Error-Correcting Output Codes. Journal of Signal Processing Systems, 55(1-3), 35–47.
Abstract: Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on radial frequency, texture-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this sense, error-correcting output codes (ECOC) show to robustly combine binary classifiers to solve multi-class problems. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different sub-sets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers. Furthermore, the combination of RF and texture-based features also shows improvements over the state-of-the-art approaches.
|
|
|
Oriol Rodriguez-Leor, E. Fernandez-Nofrerias, J. Mauri, C. Garcia, R. Villuendas, V. Valle, et al. (2003). Intravascular ultrasound segmentation using local binary patterns. European Heart Journal (IF: 5.997), ESC Congress 2003.
|
|
|
Anastasios Doulamis, Nikolaos Doulamis, Marco Bertini, Jordi Gonzalez, & Thomas B. Moeslund. (2016). Introduction to the Special Issue on the Analysis and Retrieval of Events/Actions and Workflows in Video Streams. MTAP - Multimedia Tools and Applications, 75(22), 14985–14990.
|
|