|
Dorota Kaminska, Kadir Aktas, Davit Rizhinashvili, Danila Kuklyanov, Abdallah Hussein Sham, Sergio Escalera, et al. (2021). Two-stage Recognition and Beyond for Compound Facial Emotion Recognition. ELEC - Electronics, 10(22), 2847.
Abstract: Facial emotion recognition is an inherently complex problem due to individual diversity in facial features and racial and cultural differences. Moreover, facial expressions typically reflect the mixture of people’s emotional statuses, which can be expressed using compound emotions. Compound facial emotion recognition makes the problem even more difficult because the discrimination between dominant and complementary emotions is usually weak. We have created a database that includes 31,250 facial images with different emotions of 115 subjects whose gender distribution is almost uniform to address compound emotion recognition. In addition, we have organized a competition based on the proposed dataset, held at FG workshop 2020. This paper analyzes the winner’s approach—a two-stage recognition method (1st stage, coarse recognition; 2nd stage, fine recognition), which enhances the classification of symmetrical emotion labels.
Keywords: compound emotion recognition; facial expression recognition; dominant and complementary emotion recognition; deep learning
|
|
|
Javier Selva, Anders S. Johansen, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund, & Albert Clapes. (2023). Video transformers: A survey. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(11), 12922–12943.
Abstract: Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However, they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced by the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey, we analyze the main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled at the input level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition, we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.
Keywords: Artificial Intelligence; Computer Vision; Self-Attention; Transformers; Video Representations
|
|
|
Razieh Rastgoo, Kourosh Kiani, & Sergio Escalera. (2020). Video-based Isolated Hand Sign Language Recognition Using a Deep Cascaded Model. MTAP - Multimedia Tools and Applications, 79, 22965–22987.
Abstract: In this paper, we propose an efficient cascaded model for sign language recognition taking benefit from spatio-temporal hand-based information using deep learning approaches, especially Single Shot Detector (SSD), Convolutional Neural Network (CNN), and Long Short Term Memory (LSTM), from videos. Our simple yet efficient and accurate model includes two main parts: hand detection and sign recognition. Three types of spatial features, including hand features, Extra Spatial Hand Relation (ESHR) features, and Hand Pose (HP) features, have been fused in the model to feed to LSTM for temporal features extraction. We train SSD model for hand detection using some videos collected from five online sign dictionaries. Our model is evaluated on our proposed dataset (Rastgoo et al., Expert Syst Appl 150: 113336, 2020), including 10’000 sign videos for 100 Persian sign using 10 contributors in 10 different backgrounds, and isoGD dataset. Using the 5-fold cross-validation method, our model outperforms state-of-the-art alternatives in sign language recognition
|
|
|
Wenlong Deng, Yongli Mou, Takahiro Kashiwa, Sergio Escalera, Kohei Nagai, Kotaro Nakayama, et al. (2020). Vision based Pixel-level Bridge Structural Damage Detection Using a Link ASPP Network. AC - Automation in Construction, 110, 102973.
Abstract: Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface structural damage detection, such as delamination and rebar exposure. It is well known that the quality of a deep learning model is highly dependent on the quality of the training dataset. Bridge damage detection, our application domain, has the following main challenges: (i) labeling the damages requires knowledgeable civil engineering professionals, which makes it difficult to collect a large annotated dataset; (ii) the damage area could be very small, whereas the background area is large, which creates an unbalanced training environment; (iii) due to the difficulty to exactly determine the extension of the damage, there is often a variation among different labelers who perform pixel-wise labeling. In this paper, we propose a novel model for bridge structural damage detection to address the first two challenges. This paper follows the idea of an atrous spatial pyramid pooling (ASPP) module that is designed as a novel network for bridge damage detection. Further, we introduce the weight balanced Intersection over Union (IoU) loss function to achieve accurate segmentation on a highly unbalanced small dataset. The experimental results show that (i) the IoU loss function improves the overall performance of damage detection, as compared to cross entropy loss or focal loss, and (ii) the proposed model has a better ability to detect a minority class than other light segmentation networks.
Keywords: Semantic image segmentation; Deep learning
|
|
|
Xavier Otazu, & Oriol Pujol. (2006). Wavelet based approach to cluster analysis. Application on low dimensional data sets. PRL - Pattern Recognition Letters, 27(14), 1590–1605.
|
|