|
Jose Garcia-Rodriguez, Isabelle Guyon, Sergio Escalera, Alexandra Psarrou, Andrew Lewis, & Miguel Cazorla. (2017). Editorial: Special Issue on Computational Intelligence for Vision and Robotics. Neural Computing and Applications - Neural Computing and Applications, 28(5), 853–854.
|
|
|
Francesco Ciompi, Oriol Pujol, & Petia Radeva. (2014). ECOC-DRF: Discriminative random fields based on error correcting output codes. PR - Pattern Recognition, 47(6), 2193–2204.
Abstract: We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.
Keywords: Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models
|
|
|
Reza Azad, Maryam Asadi-Aghbolaghi, Shohreh Kasaei, & Sergio Escalera. (2019). Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps. TCSVT - IEEE Transactions on Circuits and Systems for Video Technology, 29(6), 1729–1740.
Abstract: Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.
Keywords: Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding
|
|
|
Jianzhy Guo, Zhen Lei, Jun Wan, Egils Avots, Noushin Hajarolasvadi, Boris Knyazev, et al. (2018). Dominant and Complementary Emotion Recognition from Still Images of Faces. ACCESS - IEEE Access, 6, 26391–26403.
Abstract: Emotion recognition has a key role in affective computing. Recently, fine-grained emotion analysis, such as compound facial expression of emotions, has attracted high interest of researchers working on affective computing. A compound facial emotion includes dominant and complementary emotions (e.g., happily-disgusted and sadly-fearful), which is more detailed than the seven classical facial emotions (e.g., happy, disgust, and so on). Current studies on compound emotions are limited to use data sets with limited number of categories and unbalanced data distributions, with labels obtained automatically by machine learning-based algorithms which could lead to inaccuracies. To address these problems, we released the iCV-MEFED data set, which includes 50 classes of compound emotions and labels assessed by psychologists. The task is challenging due to high similarities of compound facial emotions from different categories. In addition, we have organized a challenge based on the proposed iCV-MEFED data set, held at FG workshop 2017. In this paper, we analyze the top three winner methods and perform further detailed experiments on the proposed data set. Experiments indicate that pairs of compound emotion (e.g., surprisingly-happy vs happily-surprised) are more difficult to be recognized if compared with the seven basic emotions. However, we hope the proposed data set can help to pave the way for further research on compound facial emotion recognition.
|
|
|
Oriol Pujol, Petia Radeva, & Jordi Vitria. (2006). Discriminant ECOC: A Heuristic Method for Application Dependent Design of Error Correcting Output Codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6): 1007–1012.
|
|