|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2010). Re-coding ECOCs without retraining. PRL - Pattern Recognition Letters, 31(7), 555–562.
Abstract: A standard way to deal with multi-class categorization problems is by the combination of binary classifiers in a pairwise voting procedure. Recently, this classical approach has been formalized in the Error-Correcting Output Codes (ECOC) framework. In the ECOC framework, the one-versus-one coding demonstrates to achieve higher performance than the rest of coding designs. The binary problems that we train in the one-versus-one strategy are significantly smaller than in the rest of designs, and usually easier to be learnt, taking into account the smaller overlapping between classes. However, a high percentage of the positions coded by zero of the coding matrix, which implies a high sparseness degree, does not codify meta-class membership information. In this paper, we show that using the training data we can redefine without re-training, in a problem-dependent way, the one-versus-one coding matrix so that the new coded information helps the system to increase its generalization capability. Moreover, the new re-coding strategy is generalized to be applied over any binary code. The results over several UCI Machine Learning repository data sets and two real multi-class problems show that performance improvements can be obtained re-coding the classical one-versus-one and Sparse random designs compared to different state-of-the-art ECOC configurations.
|
|
|
Jose Seabra, Francesco Ciompi, Oriol Pujol, J. Mauri, Petia Radeva, & Joao Sanchez. (2011). Rayleigh Mixture Model for Plaque Characterization in Intravascular Ultrasound. TBME - IEEE Transactions on Biomedical Engineering, 58(5), 1314–1324.
Abstract: Vulnerable plaques are the major cause of carotid and coronary vascular problems, such as heart attack or stroke. A correct modeling of plaque echomorphology and composition can help the identification of such lesions. The Rayleigh distribution is widely used to describe (nearly) homogeneous areas in ultrasound images. Since plaques may contain tissues with heterogeneous regions, more complex distributions depending on multiple parameters are usually needed, such as Rice, K or Nakagami distributions. In such cases, the problem formulation becomes more complex, and the optimization procedure to estimate the plaque echomorphology is more difficult. Here, we propose to model the tissue echomorphology by means of a mixture of Rayleigh distributions, known as the Rayleigh mixture model (RMM). The problem formulation is still simple, but its ability to describe complex textural patterns is very powerful. In this paper, we present a method for the automatic estimation of the RMM mixture parameters by means of the expectation maximization algorithm, which aims at characterizing tissue echomorphology in ultrasound (US). The performance of the proposed model is evaluated with a database of in vitro intravascular US cases. We show that the mixture coefficients and Rayleigh parameters explicitly derived from the mixture model are able to accurately describe different plaque types and to significantly improve the characterization performance of an already existing methodology.
|
|
|
Zahra Raisi-Estabragh, Carlos Martin-Isla, Louise Nissen, Liliana Szabo, Victor M. Campello, Sergio Escalera, et al. (2023). Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset. FCM - Frontiers in Cardiovascular Medicine, .
|
|
|
Antonio Hernandez, Miguel Angel Bautista, Xavier Perez Sala, Victor Ponce, Sergio Escalera, Xavier Baro, et al. (2014). Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D. PRL - Pattern Recognition Letters, 50(1), 112–121.
Abstract: PATREC5825
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
Keywords: RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition
|
|
|
Mohammad N. S. Jahromi, Pau Buch Cardona, Egils Avots, Kamal Nasrollahi, Sergio Escalera, Thomas B. Moeslund, et al. (2019). Privacy-Constrained Biometric System for Non-cooperative Users. ENTROPY - Entropy, 21(11), 1033.
Abstract: With the consolidation of the new data protection regulation paradigm for each individual within the European Union (EU), major biometric technologies are now confronted with many concerns related to user privacy in biometric deployments. When individual biometrics are disclosed, the sensitive information about his/her personal data such as financial or health are at high risk of being misused or compromised. This issue can be escalated considerably over scenarios of non-cooperative users, such as elderly people residing in care homes, with their inability to interact conveniently and securely with the biometric system. The primary goal of this study is to design a novel database to investigate the problem of automatic people recognition under privacy constraints. To do so, the collected data-set contains the subject’s hand and foot traits and excludes the face biometrics of individuals in order to protect their privacy. We carried out extensive simulations using different baseline methods, including deep learning. Simulation results show that, with the spatial features extracted from the subject sequence in both individual hand or foot videos, state-of-the-art deep models provide promising recognition performance.
Keywords: biometric recognition; multimodal-based human identification; privacy; deep learning
|
|