|
Frederic Sampedro, Anna Domenech, & Sergio Escalera. (2014). Static and dynamic computational cancer spread quantification in whole body FDG-PET/CT scans. JMIHI - Journal of Medical Imaging and Health Informatics, 4(6), 825–831.
Abstract: In this work we address the computational cancer spread quantification scenario in whole body FDG-PET/CT scans. At the static level, this setting can be modeled as a clustering problem on the set of 3D connected components of the whole body PET tumoral segmentation mask carried out by nuclear medicine physicians. At the dynamic level, and ad-hoc algorithm is proposed in order to quantify the cancer spread time evolution which, when combined with other existing indicators, gives rise to the metabolic tumor volume-aggressiveness-spread time evolution chart, a novel tool that we claim that would prove useful in nuclear medicine and oncological clinical or research scenarios. Good performance results of the proposed methodologies both at the clinical and technological level are shown using a dataset of 48 segmented whole body FDG-PET/CT scans.
Keywords: CANCER SPREAD; COMPUTER AIDED DIAGNOSIS; MEDICAL IMAGING; TUMOR QUANTIFICATION
|
|
|
Simone Balocco, Carlo Gatta, Francesco Ciompi, A. Wahle, Petia Radeva, S. Carlier, et al. (2014). Standardized evaluation methodology and reference database for evaluating IVUS image segmentation. CMIG - Computerized Medical Imaging and Graphics, 38(2), 70–90.
Abstract: This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved.
Keywords: IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation
|
|
|
Javier Marin, & Sergio Escalera. (2021). SSSGAN: Satellite Style and Structure Generative Adversarial Networks. Remote Sensing, 13(19), 3984.
Abstract: This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
|
|
|
Simone Balocco, Carlo Gatta, Oriol Pujol, J. Mauri, & Petia Radeva. (2010). SRBF: Speckle Reducing Bilateral Filtering. UMB - Ultrasound in Medicine and Biology, 36(8), 1353–1363.
Abstract: Speckle noise negatively affects medical ultrasound image shape interpretation and boundary detection. Speckle removal filters are widely used to selectively remove speckle noise without destroying important image features to enhance object boundaries. In this article, a fully automatic bilateral filter tailored to ultrasound images is proposed. The edge preservation property is obtained by embedding noise statistics in the filter framework. Consequently, the filter is able to tackle the multiplicative behavior modulating the smoothing strength with respect to local statistics. The in silico experiments clearly showed that the speckle reducing bilateral filter (SRBF) has superior performances to most of the state of the art filtering methods. The filter is tested on 50 in vivo US images and its influence on a segmentation task is quantified. The results using SRBF filtered data sets show a superior performance to using oriented anisotropic diffusion filtered images. This improvement is due to the adaptive support of SRBF and the embedded noise statistics, yielding a more homogeneous smoothing. SRBF results in a fully automatic, fast and flexible algorithm potentially suitable in wide ranges of speckle noise sizes, for different medical applications (IVUS, B-mode, 3-D matrix array US).
|
|
|
Oscar Lopes, Miguel Reyes, Sergio Escalera, & Jordi Gonzalez. (2014). Spherical Blurred Shape Model for 3-D Object and Pose Recognition: Quantitative Analysis and HCI Applications in Smart Environments. TSMCB - IEEE Transactions on Systems, Man and Cybernetics (Part B), 44(12), 2379–2390.
Abstract: The use of depth maps is of increasing interest after the advent of cheap multisensor devices based on structured light, such as Kinect. In this context, there is a strong need of powerful 3-D shape descriptors able to generate rich object representations. Although several 3-D descriptors have been already proposed in the literature, the research of discriminative and computationally efficient descriptors is still an open issue. In this paper, we propose a novel point cloud descriptor called spherical blurred shape model (SBSM) that successfully encodes the structure density and local variabilities of an object based on shape voxel distances and a neighborhood propagation strategy. The proposed SBSM is proven to be rotation and scale invariant, robust to noise and occlusions, highly discriminative for multiple categories of complex objects like the human hand, and computationally efficient since the SBSM complexity is linear to the number of object voxels. Experimental evaluation in public depth multiclass object data, 3-D facial expressions data, and a novel hand poses data sets show significant performance improvements in relation to state-of-the-art approaches. Moreover, the effectiveness of the proposal is also proved for object spotting in 3-D scenes and for real-time automatic hand pose recognition in human computer interaction scenarios.
|
|