|
Maria Salamo, & Sergio Escalera. (2011). Increasing Retrieval Quality in Conversational Recommenders. TKDE - IEEE Transactions on Knowledge and Data Engineering, 99, 1.
Abstract: IF JCR CCIA 2.286 2009 24/103
JCR Impact Factor 2010: 1.851
A major task of research in conversational recommender systems is personalization. Critiquing is a common and powerful form of feedback, where a user can express her feature preferences by applying a series of directional critiques over the recommendations instead of providing specific preference values. Incremental Critiquing is a conversational recommender system that uses critiquing as a feedback to efficiently personalize products. The expectation is that in each cycle the system retrieves the products that best satisfy the user’s soft product preferences from a minimal information input. In this paper, we present a novel technique that increases retrieval quality based on a combination of compatibility and similarity scores. Under the hypothesis that a user learns Turing the recommendation process, we propose two novel exponential reinforcement learning approaches for compatibility that take into account both the instant at which the user makes a critique and the number of satisfied critiques. Moreover, we consider that the impact of features on the similarity differs according to the preferences manifested by the user. We propose a global weighting approach that uses a common weight for nearest cases in order to focus on groups of relevant products. We show that our methodology significantly improves recommendation efficiency in four data sets of different sizes in terms of session length in comparison with state-of-the-art approaches. Moreover, our recommender shows higher robustness against noisy user data when compared to classical approaches
|
|
|
Sergio Escalera, David Masip, Eloi Puertas, Petia Radeva, & Oriol Pujol. (2011). Online Error-Correcting Output Codes. PRL - Pattern Recognition Letters, 32(3), 458–467.
Abstract: IF JCR CCIA 1.303 2009 54/103
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem independent codings one-versus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage of the problem data for minimizing the number of dichotomizers used in the ECOC framework while preserving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI database and applied to two real machine vision applications: traffic sign recognition and face recognition. As a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes using any base classifier.
|
|
|
Sergio Escalera, Alicia Fornes, Oriol Pujol, Josep Llados, & Petia Radeva. (2011). Circular Blurred Shape Model for Multiclass Symbol Recognition. TSMCB - IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE), 41(2), 497–506.
Abstract: In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.
|
|
|
Sergio Escalera. (2013). Multi-Modal Human Behaviour Analysis from Visual Data Sources. ERCIM - ERCIM News journal, 21–22.
Abstract: The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction.
|
|
|
Xavier Carrillo, E Fernandez-Nofrerias, Francesco Ciompi, Oriol Rodriguez-Leor, Petia Radeva, Neus Salvatella, et al. (2011). Changes in Radial Artery Volume Assessed Using Intravascular Ultrasound: A Comparison of Two Vasodilator Regimens in Transradial Coronary Intervention. JOIC - Journal of Invasive Cardiology, 23(10), 401–404.
Abstract: OBJECTIVES:
This study used intravascular ultrasound (IVUS) to evaluate radial artery volume changes after intraarterial administration of nitroglycerin and/or verapamil.
BACKGROUND:
Radial artery spasm, which is associated with radial artery size, is the main limitation of the transradial approach in percutaneous coronary interventions (PCI).
METHODS:
This prospective, randomized study compared the effect of two intra-arterial vasodilator regimens on radial artery volume: 0.2 mg of nitroglycerin plus 2.5 mg of verapamil (Group 1; n = 15) versus 2.5 mg of verapamil alone (Group 2; n = 15). Radial artery lumen volume was assessed using IVUS at two time points: at baseline (5 minutes after sheath insertion) and post-vasodilator (1 minute after drug administration). The luminal volume of the radial artery was computed using ECOC Random Fields (ECOC-RF), a technique used for automatic segmentation of luminal borders in longitudinal cut images from IVUS sequences.
RESULTS:
There was a significant increase in arterial lumen volume in both groups, with an increase from 451 ± 177 mm³ to 508 ± 192 mm³ (p = 0.001) in Group 1 and from 456 ± 188 mm³ to 509 ± 170 mm³ (p = 0.001) in Group 2. There were no significant differences between the groups in terms of absolute volume increase (58 mm³ versus 53 mm³, respectively; p = 0.65) or in relative volume increase (14% versus 20%, respectively; p = 0.69).
CONCLUSIONS:
Administration of nitroglycerin plus verapamil or verapamil alone to the radial artery resulted in similar increases in arterial lumen volume according to ECOC-RF IVUS measurements.
Keywords: radial; vasodilator treatment; percutaneous coronary intervention; IVUS; volumetric IVUS analysis
|
|