|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2010). Error-Correcting Output Codes Library. JMLR - Journal of Machine Learning Research, 11, 661–664.
Abstract: (Feb):661−664
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The ECOC framework is a powerful tool to deal with multi-class categorization problems. This library contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean, inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-weighted) with the parameters defined by the authors, as well as the option to include your own coding, decoding, and base classifier.
|
|
|
Sergio Escalera, Vassilis Athitsos, & Isabelle Guyon. (2016). Challenges in multimodal gesture recognition. JMLR - Journal of Machine Learning Research, 17, 1–54.
Abstract: This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011-2015. We began right at the start of the KinectTMrevolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands
of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
Keywords: Gesture Recognition; Time Series Analysis; Multimodal Data Analysis; Computer Vision; Pattern Recognition; Wearable sensors; Infrared Cameras; KinectTM
|
|
|
Adrien Pavao, Isabelle Guyon, Anne-Catherine Letournel, Dinh-Tuan Tran, Xavier Baro, Hugo Jair Escalante, et al. (2023). CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges. JMLR - Journal of Machine Learning Research, .
Abstract: CodaLab Competitions is an open source web platform designed to help data scientists and research teams to crowd-source the resolution of machine learning problems through the organization of competitions, also called challenges or contests. CodaLab Competitions provides useful features such as multiple phases, results and code submissions, multi-score leaderboards, and jobs running
inside Docker containers. The platform is very flexible and can handle large scale experiments, by allowing organizers to upload large datasets and provide their own CPU or GPU compute workers.
|
|
|
Jordi Esquirol, Cristina Palmero, Vanessa Bayo, Miquel Angel Cos, Sergio Escalera, David Sanchez, et al. (2017). Automatic RBG-depth-pressure anthropometric analysis and individualised sleep solution prescription. JMET - Journal of Medical Engineering & Technology, 486–497.
Abstract: INTRODUCTION:
Sleep surfaces must adapt to individual somatotypic features to maintain a comfortable, convenient and healthy sleep, preventing diseases and injuries. Individually determining the most adequate rest surface can often be a complex and subjective question.
OBJECTIVES:
To design and validate an automatic multimodal somatotype determination model to automatically recommend an individually designed mattress-topper-pillow combination.
METHODS:
Design and validation of an automated prescription model for an individualised sleep system is performed through a single-image 2 D-3 D analysis and body pressure distribution, to objectively determine optimal individual sleep surfaces combining five different mattress densities, three different toppers and three cervical pillows.
RESULTS:
A final study (n = 151) and re-analysis (n = 117) defined and validated the model, showing high correlations between calculated and real data (>85% in height and body circumferences, 89.9% in weight, 80.4% in body mass index and more than 70% in morphotype categorisation).
CONCLUSIONS:
Somatotype determination model can accurately prescribe an individualised sleep solution. This can be useful for healthy people and for health centres that need to adapt sleep surfaces to people with special needs. Next steps will increase model's accuracy and analise, if this prescribed individualised sleep solution can improve sleep quantity and quality; additionally, future studies will adapt the model to mattresses with technological improvements, tailor-made production and will define interfaces for people with special needs.
|
|
|
Frederic Sampedro, Sergio Escalera, Anna Domenech, & Ignasi Carrio. (2015). Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source. JMIHI - Journal of Medical Imaging and Health Informatics, 5(2), 192–201.
Abstract: Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level.
Keywords: CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY
|
|