|
Yagmur Gucluturk, Umut Guclu, Xavier Baro, Hugo Jair Escalante, Isabelle Guyon, Sergio Escalera, et al. (2018). Multimodal First Impression Analysis with Deep Residual Networks. TAC - IEEE Transactions on Affective Computing, 8(3), 316–329.
Abstract: People form first impressions about the personalities of unfamiliar individuals even after very brief interactions with them. In this study we present and evaluate several models that mimic this automatic social behavior. Specifically, we present several models trained on a large dataset of short YouTube video blog posts for predicting apparent Big Five personality traits of people and whether they seem suitable to be recommended to a job interview. Along with presenting our audiovisual approach and results that won the third place in the ChaLearn First Impressions Challenge, we investigate modeling in different modalities including audio only, visual only, language only, audiovisual, and combination of audiovisual and language. Our results demonstrate that the best performance could be obtained using a fusion of all data modalities. Finally, in order to promote explainability in machine learning and to provide an example for the upcoming ChaLearn challenges, we present a simple approach for explaining the predictions for job interview recommendations
|
|
|
Ricardo Dario Perez Principi, Cristina Palmero, Julio C. S. Jacques Junior, & Sergio Escalera. (2021). On the Effect of Observed Subject Biases in Apparent Personality Analysis from Audio-visual Signals. TAC - IEEE Transactions on Affective Computing, 12(3), 607–621.
Abstract: Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target, but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this work, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multi-modal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyse spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn First Impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions.
|
|
|
Hugo Jair Escalante, Heysem Kaya, Albert Ali Salah, Sergio Escalera, Yagmur Gucluturk, Umut Guçlu, et al. (2022). Modeling, Recognizing, and Explaining Apparent Personality from Videos. TAC - IEEE Transactions on Affective Computing, 13(2), 894–911.
Abstract: Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.
|
|
|
Fatemeh Noroozi, Ciprian Corneanu, Dorota Kamińska, Tomasz Sapiński, Sergio Escalera, & Gholamreza Anbarjafari. (2021). Survey on Emotional Body Gesture Recognition. TAC - IEEE Transactions on Affective Computing, 12(2), 505–523.
Abstract: Automatic emotion recognition has become a trending research topic in the past decade. While works based on facial expressions or speech abound, recognizing affect from body gestures remains a less explored topic. We present a new comprehensive survey hoping to boost research in the field. We first introduce emotional body gestures as a component of what is commonly known as “body language” and comment general aspects as gender differences and culture dependence. We then define a complete framework for automatic emotional body gesture recognition. We introduce person detection and comment static and dynamic body pose estimation methods both in RGB and 3D. We then comment the recent literature related to representation learning and emotion recognition from images of emotionally expressive gestures. We also discuss multi-modal approaches that combine speech or face with body gestures for improved emotion recognition. While pre-processing methodologies (e.g. human detection and pose estimation) are nowadays mature technologies fully developed for robust large scale analysis, we show that for emotion recognition the quantity of labelled data is scarce, there is no agreement on clearly defined output spaces and the representations are shallow and largely based on naive geometrical representations.
|
|
|
Kaustubh Kulkarni, Ciprian Corneanu, Ikechukwu Ofodile, Sergio Escalera, Xavier Baro, Sylwia Hyniewska, et al. (2021). Automatic Recognition of Facial Displays of Unfelt Emotions. TAC - IEEE Transactions on Affective Computing, 12(2), 377–390.
Abstract: Humans modify their facial expressions in order to communicate their internal states and sometimes to mislead observers regarding their true emotional states. Evidence in experimental psychology shows that discriminative facial responses are short and subtle. This suggests that such behavior would be easier to distinguish when captured in high resolution at an increased frame rate. We are proposing SASE-FE, the first dataset of facial expressions that are either congruent or incongruent with underlying emotion states. We show that overall the problem of recognizing whether facial movements are expressions of authentic emotions or not can be successfully addressed by learning spatio-temporal representations of the data. For this purpose, we propose a method that aggregates features along fiducial trajectories in a deeply learnt space. Performance of the proposed model shows that on average, it is easier to distinguish among genuine facial expressions of emotion than among unfelt facial expressions of emotion and that certain emotion pairs such as contempt and disgust are more difficult to distinguish than the rest. Furthermore, the proposed methodology improves state of the art results on CK+ and OULU-CASIA datasets for video emotion recognition, and achieves competitive results when classifying facial action units on BP4D datase.
|
|