|
Carlos Martin-Isla, Victor M Campello, Cristian Izquierdo, Kaisar Kushibar, Carla Sendra Balcells, Polyxeni Gkontra, et al. (2023). Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge. JBHI - IEEE Journal of Biomedical and Health Informatics, 27(7), 3302–3313.
Abstract: In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.
|
|
|
Jelena Gorbova, Egils Avots, Iiris Lusi, Mark Fishel, Sergio Escalera, & Gholamreza Anbarjafari. (2018). Integrating Vision and Language for First Impression Personality Analysis. MULTIMEDIA - IEEE Multimedia, 25(2), 24–33.
Abstract: The authors present a novel methodology for analyzing integrated audiovisual signals and language to assess a persons personality. An evaluation of their proposed multimodal method using a job candidate screening system that predicted five personality traits from a short video demonstrates the methods effectiveness.
|
|
|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2010). On the Decoding Process in Ternary Error-Correcting Output Codes. TPAMI - IEEE on Pattern Analysis and Machine Intelligence, 32(1), 120–134.
Abstract: A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-correcting output codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a ldquodo not carerdquo symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI machine learning repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.
|
|
|
Sergio Escalera, David M.J. Tax, Oriol Pujol, Petia Radeva, & Robert P.W. Duin. (2008). Subclass Problem-Dependent Design for Error-Correcting Output Codes. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.30(6):1041–1054.
|
|
|
Fatemeh Noroozi, Marina Marjanovic, Angelina Njegus, Sergio Escalera, & Gholamreza Anbarjafari. (2019). Audio-Visual Emotion Recognition in Video Clips. TAC - IEEE Transactions on Affective Computing, 10(1), 60–75.
Abstract: This paper presents a multimodal emotion recognition system, which is based on the analysis of audio and visual cues. From the audio channel, Mel-Frequency Cepstral Coefficients, Filter Bank Energies and prosodic features are extracted. For the visual part, two strategies are considered. First, facial landmarks’ geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames, which are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to key-frames summarizing videos. Finally, confidence outputs of all the classifiers from all the modalities are used to define a new feature space to be learned for final emotion label prediction, in a late fusion/stacking fashion. The experiments conducted on the SAVEE, eNTERFACE’05, and RML databases show significant performance improvements by our proposed system in comparison to current alternatives, defining the current state-of-the-art in all three databases.
|
|