|
Sergio Escalera. (2013). Multi-Modal Human Behaviour Analysis from Visual Data Sources. ERCIM - ERCIM News journal, 21–22.
Abstract: The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction.
|
|
|
Sergio Escalera, R. M. Martinez, Jordi Vitria, Petia Radeva, & Maria Teresa Anguera. (2010). Deteccion automatica de la dominancia en conversaciones diadicas. EP - Escritos de Psicologia, 3(2), 41–45.
Abstract: Dominance is referred to the level of influence that a person has in a conversation. Dominance is an important research area in social psychology, but the problem of its automatic estimation is a very recent topic in the contexts of social and wearable computing. In this paper, we focus on the dominance detection of visual cues. We estimate the correlation among observers by categorizing the dominant people in a set of face-to-face conversations. Different dominance indicators from gestural communication are defined, manually annotated, and compared to the observers' opinion. Moreover, these indicators are automatically extracted from video sequences and learnt by using binary classifiers. Results from the three analyses showed a high correlation and allows the categorization of dominant people in public discussion video sequences.
Keywords: Dominance detection; Non-verbal communication; Visual features
|
|
|
Sergio Escalera, Oriol Pujol, Petia Radeva, Jordi Vitria, & Maria Teresa Anguera. (2010). Automatic Detection of Dominance and Expected Interest. EURASIPJ - EURASIP Journal on Advances in Signal Processing, , 12.
Abstract: Article ID 491819
Social Signal Processing is an emergent area of research that focuses on the analysis of social constructs. Dominance and interest are two of these social constructs. Dominance refers to the level of influence a person has in a conversation. Interest, when referred in terms of group interactions, can be defined as the degree of engagement that the members of a group collectively display during their interaction. In this paper, we argue that only using behavioral motion information, we are able to predict the interest of observers when looking at face-to-face interactions as well as the dominant people. First, we propose a simple set of movement-based features from body, face, and mouth activity in order to define a higher set of interaction indicators. The considered indicators are manually annotated by observers. Based on the opinions obtained, we define an automatic binary dominance detection problem and a multiclass interest quantification problem. Error-Correcting Output Codes framework is used to learn to rank the perceived observer's interest in face-to-face interactions meanwhile Adaboost is used to solve the dominant detection problem. The automatic system shows good correlation between the automatic categorization results and the manual ranking made by the observers in both dominance and interest detection problems.
|
|
|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2008). Detection of Complex Salient Regions. EURASIP Journal on Advances in Signal Processing, vol. 2008, article ID451389, 11 pages.
|
|
|
Oriol Rodriguez-Leor, E. Fernandez-Nofrerias, J. Mauri, C. Garcia, R. Villuendas, V. Valle, et al. (2003). Intravascular ultrasound segmentation using local binary patterns. European Heart Journal (IF: 5.997), ESC Congress 2003.
|
|