|
Jose Garcia-Rodriguez, Isabelle Guyon, Sergio Escalera, Alexandra Psarrou, Andrew Lewis, & Miguel Cazorla. (2017). Editorial: Special Issue on Computational Intelligence for Vision and Robotics. Neural Computing and Applications - Neural Computing and Applications, 28(5), 853–854.
|
|
|
Sergio Escalera, Jordi Gonzalez, Xavier Baro, & Jamie Shotton. (2016). Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1489–1491.
Abstract: The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others.
|
|
|
Marc Oliu, Ciprian Corneanu, Kamal Nasrollahi, Olegs Nikisins, Sergio Escalera, Yunlian Sun, et al. (2016). Improved RGB-D-T based Face Recognition. BIO - IET Biometrics, 5(4), 297–303.
Abstract: Reliable facial recognition systems are of crucial importance in various applications from entertainment to security. Thanks to the deep-learning concepts introduced in the field, a significant improvement in the performance of the unimodal facial recognition systems has been observed in the recent years. At the same time a multimodal facial recognition is a promising approach. This study combines the latest successes in both directions by applying deep learning convolutional neural networks (CNN) to the multimodal RGB, depth, and thermal (RGB-D-T) based facial recognition problem outperforming previously published results. Furthermore, a late fusion of the CNN-based recognition block with various hand-crafted features (local binary patterns, histograms of oriented gradients, Haar-like rectangular features, histograms of Gabor ordinal measures) is introduced, demonstrating even better recognition performance on a benchmark RGB-D-T database. The obtained results in this study show that the classical engineered features and CNN-based features can complement each other for recognition purposes.
|
|
|
Anastasios Doulamis, Nikolaos Doulamis, Marco Bertini, Jordi Gonzalez, & Thomas B. Moeslund. (2016). Introduction to the Special Issue on the Analysis and Retrieval of Events/Actions and Workflows in Video Streams. MTAP - Multimedia Tools and Applications, 75(22), 14985–14990.
|
|
|
Sergio Escalera, Jordi Gonzalez, Hugo Jair Escalante, Xavier Baro, & Isabelle Guyon. (2018). Looking at People Special Issue. IJCV - International Journal of Computer Vision, 126(2-4), 141–143.
|
|