|
Frederic Sampedro, Sergio Escalera, Anna Domenech, & Ignasi Carrio. (2015). Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source. JMIHI - Journal of Medical Imaging and Health Informatics, 5(2), 192–201.
Abstract: Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level.
Keywords: CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY
|
|
|
Victor Ponce, Mario Gorga, Xavier Baro, Petia Radeva, & Sergio Escalera. (2011). Análisis de la expresión oral y gestual en proyectos fin de carrera vía un sistema de visión artificial. ReVisión, 4(1).
Abstract: La comunicación y expresión oral es una competencia de especial relevancia en el EEES. No obstante, en muchas enseñanzas superiores la puesta en práctica de esta competencia ha sido relegada principalmente a la presentación de proyectos fin de carrera. Dentro de un proyecto de innovación docente, se ha desarrollado una herramienta informática para la extracción de información objetiva para el análisis de la expresión oral y gestual de los alumnos. El objetivo es dar un “feedback” a los estudiantes que les permita mejorar la calidad de sus presentaciones. El prototipo inicial que se presenta en este trabajo permite extraer de forma automática información audiovisual y analizarla mediante técnicas de aprendizaje. El sistema ha sido aplicado a 15 proyectos fin de carrera y 15 exposiciones dentro de una asignatura de cuarto curso. Los resultados obtenidos muestran la viabilidad del sistema para sugerir factores que ayuden tanto en el éxito de la comunicación así como en los criterios de evaluación.
|
|
|
Frederic Sampedro, Anna Domenech, & Sergio Escalera. (2014). Static and dynamic computational cancer spread quantification in whole body FDG-PET/CT scans. JMIHI - Journal of Medical Imaging and Health Informatics, 4(6), 825–831.
Abstract: In this work we address the computational cancer spread quantification scenario in whole body FDG-PET/CT scans. At the static level, this setting can be modeled as a clustering problem on the set of 3D connected components of the whole body PET tumoral segmentation mask carried out by nuclear medicine physicians. At the dynamic level, and ad-hoc algorithm is proposed in order to quantify the cancer spread time evolution which, when combined with other existing indicators, gives rise to the metabolic tumor volume-aggressiveness-spread time evolution chart, a novel tool that we claim that would prove useful in nuclear medicine and oncological clinical or research scenarios. Good performance results of the proposed methodologies both at the clinical and technological level are shown using a dataset of 48 segmented whole body FDG-PET/CT scans.
Keywords: CANCER SPREAD; COMPUTER AIDED DIAGNOSIS; MEDICAL IMAGING; TUMOR QUANTIFICATION
|
|
|
Alvaro Cepero, Albert Clapes, & Sergio Escalera. (2015). Automatic non-verbal communication skills analysis: a quantitative evaluation. AIC - AI Communications, 28(1), 87–101.
Abstract: The oral communication competence is defined on the top of the most relevant skills for one's professional and personal life. Because of the importance of communication in our activities of daily living, it is crucial to study methods to evaluate and provide the necessary feedback that can be used in order to improve these communication capabilities and, therefore, learn how to express ourselves better. In this work, we propose a system capable of evaluating quantitatively the quality of oral presentations in an automatic fashion. The system is based on a multi-modal RGB, depth, and audio data description and a fusion approach in order to recognize behavioral cues and train classifiers able to eventually predict communication quality levels. The performance of the proposed system is tested on a novel dataset containing Bachelor thesis' real defenses, presentations from an 8th semester Bachelor courses, and Master courses' presentations at Universitat de Barcelona. Using as groundtruth the marks assigned by actual instructors, our system achieves high performance categorizing and ranking presentations by their quality, and also making real-valued mark predictions.
Keywords: Social signal processing; human behavior analysis; multi-modal data description; multi-modal data fusion; non-verbal communication analysis; e-Learning
|
|
|
Frederic Sampedro, Sergio Escalera, & Anna Puig. (2014). Iterative Multiclass Multiscale Stacked Sequential Learning: definition and application to medical volume segmentation. PRL - Pattern Recognition Letters, 46, 1–10.
Abstract: In this work we present the iterative multi-class multi-scale stacked sequential learning framework (IMMSSL), a novel learning scheme that is particularly suited for medical volume segmentation applications. This model exploits the inherent voxel contextual information of the structures of interest in order to improve its segmentation performance results. Without any feature set or learning algorithm prior assumption, the proposed scheme directly seeks to learn the contextual properties of a region from the predicted classifications of previous classifiers within an iterative scheme. Performance results regarding segmentation accuracy in three two-class and multi-class medical volume datasets show a significant improvement with respect to state of the art alternatives. Due to its easiness of implementation and its independence of feature space and learning algorithm, the presented machine learning framework could be taken into consideration as a first choice in complex volume segmentation scenarios.
Keywords: Machine learning; Sequential learning; Multi-class problems; Contextual learning; Medical volume segmentation
|
|