|
Carlo Gatta, Oriol Pujol, Oriol Rodriguez-Leor, J. M. Ferre, & Petia Radeva. (2009). Fast Rigid Registration of Vascular Structures in IVUS Sequences. IEEE Transactions on Information Technology in Biomedicine, 13(6), 106–1011.
Abstract: Intravascular ultrasound (IVUS) technology permits visualization of high-resolution images of internal vascular structures. IVUS is a unique image-guiding tool to display longitudinal view of the vessels, and estimate the length and size of vascular structures with the goal of accurate diagnosis. Unfortunately, due to pulsatile contraction and expansion of the heart, the captured images are affected by different motion artifacts that make visual inspection difficult. In this paper, we propose an efficient algorithm that aligns vascular structures and strongly reduces the saw-shaped oscillation, simplifying the inspection of longitudinal cuts; it reduces the motion artifacts caused by the displacement of the catheter in the short-axis plane and the catheter rotation due to vessel tortuosity. The algorithm prototype aligns 3.16 frames/s and clearly outperforms state-of-the-art methods with similar computational cost. The speed of the algorithm is crucial since it allows to inspect the corrected sequence during patient intervention. Moreover, we improved an indirect methodology for IVUS rigid registration algorithm evaluation.
|
|
|
Mohammad Ali Bagheri, Qigang Gao, Sergio Escalera, Huamin Ren, Thomas B. Moeslund, & Elham Etemad. (2017). Locality Regularized Group Sparse Coding for Action Recognition. CVIU - Computer Vision and Image Understanding, 158, 106–114.
Abstract: Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets.
Keywords: Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition
|
|
|
Antonio Hernandez, Miguel Angel Bautista, Xavier Perez Sala, Victor Ponce, Sergio Escalera, Xavier Baro, et al. (2014). Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D. PRL - Pattern Recognition Letters, 50(1), 112–121.
Abstract: PATREC5825
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
Keywords: RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition
|
|
|
Xavier Baro, Sergio Escalera, Jordi Vitria, Oriol Pujol, & Petia Radeva. (2009). Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification. TITS - IEEE Transactions on Intelligent Transportation Systems, 10(1), 113–126.
Abstract: The high variability of sign appearance in uncontrolled environments has made the detection and classification of road signs a challenging problem in computer vision. In this paper, we introduce a novel approach for the detection and classification of traffic signs. Detection is based on a boosted detectors cascade, trained with a novel evolutionary version of Adaboost, which allows the use of large feature spaces. Classification is defined as a multiclass categorization problem. A battery of classifiers is trained to split classes in an Error-Correcting Output Code (ECOC) framework. We propose an ECOC design through a forest of optimal tree structures that are embedded in the ECOC matrix. The novel system offers high performance and better accuracy than the state-of-the-art strategies and is potentially better in terms of noise, affine deformation, partial occlusions, and reduced illumination.
|
|
|
Mark Philip Philipsen, Jacob Velling Dueholm, Anders Jorgensen, Sergio Escalera, & Thomas B. Moeslund. (2018). Organ Segmentation in Poultry Viscera Using RGB-D. SENS - Sensors, 18(1), 117.
Abstract: We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.
Keywords: semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN
|
|