|
Francesco Ciompi, Oriol Pujol, & Petia Radeva. (2014). ECOC-DRF: Discriminative random fields based on error correcting output codes. PR - Pattern Recognition, 47(6), 2193–2204.
Abstract: We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.
Keywords: Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models
|
|
|
Sergio Escalera, Ana Puig, Oscar Amoros, & Maria Salamo. (2011). Intelligent GPGPU Classification in Volume Visualization: a framework based on Error-Correcting Output Codes. CGF - Computer Graphics Forum, 30(7), 2107–2115.
Abstract: IF JCR 1.455 2010 25/99
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling. We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage. To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different data sets for several volume structures shows high computational performance and classification accuracy.
|
|
|
Reza Azad, Maryam Asadi-Aghbolaghi, Shohreh Kasaei, & Sergio Escalera. (2019). Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps. TCSVT - IEEE Transactions on Circuits and Systems for Video Technology, 29(6), 1729–1740.
Abstract: Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.
Keywords: Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding
|
|
|
Sergio Escalera, Xavier Baro, Jordi Vitria, Petia Radeva, & Bogdan Raducanu. (2012). Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction. SENS - Sensors, 12(2), 1702–1719.
Abstract: IF=1.77 (2010)
Social interactions are a very important component in peopleís lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Timesí Blogging Heads opinion blog.
The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The linksí weights are a measure of the ìinfluenceî a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
|
|
|
Xavier Otazu, & Oriol Pujol. (2006). Wavelet based approach to cluster analysis. Application on low dimensional data sets. PRL - Pattern Recognition Letters, 27(14), 1590–1605.
|
|