|
Jose Garcia-Rodriguez, Isabelle Guyon, Sergio Escalera, Alexandra Psarrou, Andrew Lewis, & Miguel Cazorla. (2017). Editorial: Special Issue on Computational Intelligence for Vision and Robotics. Neural Computing and Applications - Neural Computing and Applications, 28(5), 853–854.
|
|
|
Jose Seabra, Francesco Ciompi, Oriol Pujol, J. Mauri, Petia Radeva, & Joao Sanchez. (2011). Rayleigh Mixture Model for Plaque Characterization in Intravascular Ultrasound. TBME - IEEE Transactions on Biomedical Engineering, 58(5), 1314–1324.
Abstract: Vulnerable plaques are the major cause of carotid and coronary vascular problems, such as heart attack or stroke. A correct modeling of plaque echomorphology and composition can help the identification of such lesions. The Rayleigh distribution is widely used to describe (nearly) homogeneous areas in ultrasound images. Since plaques may contain tissues with heterogeneous regions, more complex distributions depending on multiple parameters are usually needed, such as Rice, K or Nakagami distributions. In such cases, the problem formulation becomes more complex, and the optimization procedure to estimate the plaque echomorphology is more difficult. Here, we propose to model the tissue echomorphology by means of a mixture of Rayleigh distributions, known as the Rayleigh mixture model (RMM). The problem formulation is still simple, but its ability to describe complex textural patterns is very powerful. In this paper, we present a method for the automatic estimation of the RMM mixture parameters by means of the expectation maximization algorithm, which aims at characterizing tissue echomorphology in ultrasound (US). The performance of the proposed model is evaluated with a database of in vitro intravascular US cases. We show that the mixture coefficients and Rayleigh parameters explicitly derived from the mixture model are able to accurately describe different plaque types and to significantly improve the characterization performance of an already existing methodology.
|
|
|
Juan Jose Rubio, Takahiro Kashiwa, Teera Laiteerapong, Wenlong Deng, Kohei Nagai, Sergio Escalera, et al. (2019). Multi-class structural damage segmentation using fully convolutional networks. COMPUTIND - Computers in Industry, 112, 103121.
Abstract: Structural Health Monitoring (SHM) has benefited from computer vision and more recently, Deep Learning approaches, to accurately estimate the state of deterioration of infrastructure. In our work, we test Fully Convolutional Networks (FCNs) with a dataset of deck areas of bridges for damage segmentation. We create a dataset for delamination and rebar exposure that has been collected from inspection records of bridges in Niigata Prefecture, Japan. The dataset consists of 734 images with three labels per image, which makes it the largest dataset of images of bridge deck damage. This data allows us to estimate the performance of our method based on regions of agreement, which emulates the uncertainty of in-field inspections. We demonstrate the practicality of FCNs to perform automated semantic segmentation of surface damages. Our model achieves a mean accuracy of 89.7% for delamination and 78.4% for rebar exposure, and a weighted F1 score of 81.9%.
Keywords: Bridge damage detection; Deep learning; Semantic segmentation
|
|
|
Julio C. S. Jacques Junior, Xavier Baro, & Sergio Escalera. (2018). Exploiting feature representations through similarity learning, post-ranking and ranking aggregation for person re-identification. IMAVIS - Image and Vision Computing, 79, 76–85.
Abstract: Person re-identification has received special attention by the human analysis community in the last few years. To address the challenges in this field, many researchers have proposed different strategies, which basically exploit either cross-view invariant features or cross-view robust metrics. In this work, we propose to exploit a post-ranking approach and combine different feature representations through ranking aggregation. Spatial information, which potentially benefits the person matching, is represented using a 2D body model, from which color and texture information are extracted and combined. We also consider background/foreground information, automatically extracted via Deep Decompositional Network, and the usage of Convolutional Neural Network (CNN) features. To describe the matching between images we use the polynomial feature map, also taking into account local and global information. The Discriminant Context Information Analysis based post-ranking approach is used to improve initial ranking lists. Finally, the Stuart ranking aggregation method is employed to combine complementary ranking lists obtained from different feature representations. Experimental results demonstrated that we improve the state-of-the-art on VIPeR and PRID450s datasets, achieving 67.21% and 75.64% on top-1 rank recognition rate, respectively, as well as obtaining competitive results on CUHK01 dataset.
|
|
|
Julio C. S. Jacques Junior, Yagmur Gucluturk, Marc Perez, Umut Guçlu, Carlos Andujar, Xavier Baro, et al. (2022). First Impressions: A Survey on Vision-Based Apparent Personality Trait Analysis. TAC - IEEE Transactions on Affective Computing, 13(1), 75–95.
Abstract: Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.
Keywords: Personality computing; first impressions; person perception; big-five; subjective bias; computer vision; machine learning; nonverbal signals; facial expression; gesture; speech analysis; multi-modal recognition
|
|