|
Anastasios Doulamis, Nikolaos Doulamis, Marco Bertini, Jordi Gonzalez, & Thomas B. Moeslund. (2016). Introduction to the Special Issue on the Analysis and Retrieval of Events/Actions and Workflows in Video Streams. MTAP - Multimedia Tools and Applications, 75(22), 14985–14990.
|
|
|
Andre Litvin, Kamal Nasrollahi, Sergio Escalera, Cagri Ozcinar, Thomas B. Moeslund, & Gholamreza Anbarjafari. (2019). A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition. MTAP - Multimedia Tools and Applications, 78(18), 25259–25271.
Abstract: This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.
Keywords: Fully convolutional networks; FusionNet; Thermal imaging; Face recognition
|
|
|
Andres Traumann, Gholamreza Anbarjafari, & Sergio Escalera. (2015). Accurate 3D Measurement Using Optical Depth Information. EL - Electronic Letters, 51(18), 1420–1422.
Abstract: A novel three-dimensional measurement technique is proposed. The methodology consists in mapping from the screen coordinates reported by the optical camera to the real world, and integrating distance gradients from the beginning to the end point, while also minimising the error through fitting pixel locations to a smooth curve. The results demonstrate accuracy of less than half a centimetre using Microsoft Kinect II.
|
|
|
Antonio Hernandez, Carlo Gatta, Sergio Escalera, Laura Igual, Victoria Martin-Yuste, Manel Sabate, et al. (2012). Accurate coronary centerline extraction, caliber estimation and catheter detection in angiographies. TITB - IEEE Transactions on Information Technology in Biomedicine, 16(6), 1332–1340.
Abstract: Segmentation of coronary arteries in X-Ray angiography is a fundamental tool to evaluate arterial diseases and choose proper coronary treatment. The accurate segmentation of coronary arteries has become an important topic for the registration of different modalities which allows physicians rapid access to different medical imaging information from Computed Tomography (CT) scans or Magnetic Resonance Imaging (MRI). In this paper, we propose an accurate fully automatic algorithm based on Graph-cuts for vessel centerline extraction, caliber estimation, and catheter detection. Vesselness, geodesic paths, and a new multi-scale edgeness map are combined to customize the Graph-cuts approach to the segmentation of tubular structures, by means of a global optimization of the Graph-cuts energy function. Moreover, a novel supervised learning methodology that integrates local and contextual information is proposed for automatic catheter detection. We evaluate the method performance on three datasets coming from different imaging systems. The method performs as good as the expert observer w.r.t. centerline detection and caliber estimation. Moreover, the method discriminates between arteries and catheter with an accuracy of 96.5%, sensitivity of 72%, and precision of 97.4%.
|
|
|
Antonio Hernandez, Miguel Angel Bautista, Xavier Perez Sala, Victor Ponce, Sergio Escalera, Xavier Baro, et al. (2014). Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D. PRL - Pattern Recognition Letters, 50(1), 112–121.
Abstract: PATREC5825
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
Keywords: RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition
|
|