|
Zhengying Liu, Zhen Xu, Sergio Escalera, Isabelle Guyon, Julio C. S. Jacques Junior, Meysam Madadi, et al. (2020). Towards automated computer vision: analysis of the AutoCV challenges 2019. PRL - Pattern Recognition Letters, 135, 196–203.
Abstract: We present the results of recent challenges in Automated Computer Vision (AutoCV, renamed here for clarity AutoCV1 and AutoCV2, 2019), which are part of a series of challenge on Automated Deep Learning (AutoDL). These two competitions aim at searching for fully automated solutions for classification tasks in computer vision, with an emphasis on any-time performance. The first competition was limited to image classification while the second one included both images and videos. Our design imposed to the participants to submit their code on a challenge platform for blind testing on five datasets, both for training and testing, without any human intervention whatsoever. Winning solutions adopted deep learning techniques based on already published architectures, such as AutoAugment, MobileNet and ResNet, to reach state-of-the-art performance in the time budget of the challenge (only 20 minutes of GPU time). The novel contributions include strategies to deliver good preliminary results at any time during the learning process, such that a method can be stopped early and still deliver good performance. This feature is key for the adoption of such techniques by data analysts desiring to obtain rapidly preliminary results on large datasets and to speed up the development process. The soundness of our design was verified in several aspects: (1) Little overfitting of the on-line leaderboard providing feedback on 5 development datasets was observed, compared to the final blind testing on the 5 (separate) final test datasets, suggesting that winning solutions might generalize to other computer vision classification tasks; (2) Error bars on the winners’ performance allow us to say with confident that they performed significantly better than the baseline solutions we provided; (3) The ranking of participants according to the any-time metric we designed, namely the Area under the Learning Curve, was different from that of the fixed-time metric, i.e. AUC at the end of the fixed time budget. We released all winning solutions under open-source licenses. At the end of the AutoDL challenge series, all data of the challenge will be made publicly available, thus providing a collection of uniformly formatted datasets, which can serve to conduct further research, particularly on meta-learning.
Keywords: Computer vision; AutoML; Deep learning
|
|
|
Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, et al. (2021). Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3108–3125.
Abstract: This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.”
|
|
|
Zhen Xu, Sergio Escalera, Adrien Pavao, Magali Richard, Wei-Wei Tu, Quanming Yao, et al. (2022). Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform. PATTERNS - Patterns, 3(7), 100543.
Abstract: Obtaining a standardized benchmark of computational methods is a major issue in data-science communities. Dedicated frameworks enabling fair benchmarking in a unified environment are yet to be developed. Here, we introduce Codabench, a meta-benchmark platform that is open sourced and community driven for benchmarking algorithms or software agents versus datasets or tasks. A public instance of Codabench is open to everyone free of charge and allows benchmark organizers to fairly compare submissions under the same setting (software, hardware, data, algorithms), with custom protocols and data formats. Codabench has unique features facilitating easy organization of flexible and reproducible benchmarks, such as the possibility of reusing templates of benchmarks and supplying compute resources on demand. Codabench has been used internally and externally on various applications, receiving more than 130 users and 2,500 submissions. As illustrative use cases, we introduce four diverse benchmarks covering graph machine learning, cancer heterogeneity, clinical diagnosis, and reinforcement learning.
Keywords: Machine learning; data science; benchmark platform; reproducibility; competitions
|
|
|
Zahra Raisi-Estabragh, Carlos Martin-Isla, Louise Nissen, Liliana Szabo, Victor M. Campello, Sergio Escalera, et al. (2023). Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset. FCM - Frontiers in Cardiovascular Medicine, .
|
|
|
Yunan Li, Jun Wan, Qiguang Miao, Sergio Escalera, Huijuan Fang, Huizhou Chen, et al. (2020). CR-Net: A Deep Classification-Regression Network for Multimodal Apparent Personality Analysis. IJCV - International Journal of Computer Vision, 128, 2763–2780.
Abstract: First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art.
|
|