|
Pejman Rasti, Salma Samiei, Mary Agoyi, Sergio Escalera, & Gholamreza Anbarjafari. (2016). Robust non-blind color video watermarking using QR decomposition and entropy analysis. JVCIR - Journal of Visual Communication and Image Representation, 38, 838–847.
Abstract: Issues such as content identification, document and image security, audience measurement, ownership and copyright among others can be settled by the use of digital watermarking. Many recent video watermarking methods show drops in visual quality of the sequences. The present work addresses the aforementioned issue by introducing a robust and imperceptible non-blind color video frame watermarking algorithm. The method divides frames into moving and non-moving parts. The non-moving part of each color channel is processed separately using a block-based watermarking scheme. Blocks with an entropy lower than the average entropy of all blocks are subject to a further process for embedding the watermark image. Finally a watermarked frame is generated by adding moving parts to it. Several signal processing attacks are applied to each watermarked frame in order to perform experiments and are compared with some recent algorithms. Experimental results show that the proposed scheme is imperceptible and robust against common signal processing attacks.
Keywords: Video watermarking; QR decomposition; Discrete Wavelet Transformation; Chirp Z-transform; Singular value decomposition; Orthogonal–triangular decomposition
|
|
|
Francesco Ciompi, Oriol Pujol, Carlo Gatta, Marina Alberti, Simone Balocco, Xavier Carrillo, et al. (2012). HoliMab: A Holistic Approach for Media-Adventitia Border Detection in Intravascular Ultrasound. MIA - Medical Image Analysis, 16(6), 1085–1100.
Abstract: We present a fully automatic methodology for the detection of the Media-Adventitia border (MAb) in human coronary artery in Intravascular Ultrasound (IVUS) images. A robust border detection is achieved by means of a holistic interpretation of the detection problem where the target object, i.e. the media layer, is considered as part of the whole vessel in the image and all the relationships between tissues are learnt. A fairly general framework exploiting multi-class tissue characterization as well as contextual information on the morphology and the appearance of the tissues is presented. The methodology is (i) validated through an exhaustive comparison with both Inter-observer variability on two challenging databases and (ii) compared with state-of-the-art methods for the detection of the MAb in IVUS. The obtained averaged values for the mean radial distance and the percentage of area difference are 0.211 mm and 10.1%, respectively. The applicability of the proposed methodology to clinical practice is also discussed.
Keywords: Media–Adventitia border detection; Intravascular ultrasound; Multi-Scale Stacked Sequential Learning; Error-correcting output codes; Holistic segmentation
|
|
|
Reuben Dorent, Aaron Kujawa, Marina Ivory, Spyridon Bakas, Nikola Rieke, Samuel Joutard, et al. (2023). CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation. MIA - Medical Image Analysis, 83, 102628.
Abstract: Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice – VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice – VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.
Keywords: Domain Adaptation; Segmen tation; Vestibular Schwnannoma
|
|
|
Lei Li, Fuping Wu, Sihan Wang, Xinzhe Luo, Carlos Martin-Isla, Shuwei Zhai, et al. (2023). MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images. MIA - Medical Image Analysis, 87, 102808.
Abstract: Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on the myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. Note that MyoPS refers to both myocardial pathology segmentation and the challenge in this paper. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore the potential of solutions, as well as to provide a benchmark for future research. The average Dice scores of submitted algorithms were and for myocardial scars and edema, respectively. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/).
|
|
|
Anastasios Doulamis, Nikolaos Doulamis, Marco Bertini, Jordi Gonzalez, & Thomas B. Moeslund. (2016). Introduction to the Special Issue on the Analysis and Retrieval of Events/Actions and Workflows in Video Streams. MTAP - Multimedia Tools and Applications, 75(22), 14985–14990.
|
|