2020 |
|
Debora Gil, Oriol Ramos Terrades and Raquel Perez. 2020. Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution. Women in Geometry and Topology.
|
|
|
Fernando Vilariño. 2020. Unveiling the Social Impact of AI. Workshop at Digital Living Lab Days Conference.
|
|
|
Jialuo Chen, M.A.Souibgui, Alicia Fornes and Beata Megyesi. 2020. A Web-based Interactive Transcription Tool for Encrypted Manuscripts. 3rd International Conference on Historical Cryptology.52–59.
Abstract: Manual transcription of handwritten text is a time consuming task. In the case of encrypted manuscripts, the recognition is even more complex due to the huge variety of alphabets and symbol sets. To speed up and ease this process, we present a web-based tool aimed to (semi)-automatically transcribe the encrypted sources. The user uploads one or several images of the desired encrypted document(s) as input, and the system returns the transcription(s). This process is carried out in an interactive fashion with
the user to obtain more accurate results. For discovering and testing, the developed web tool is freely available.
|
|
|
Jon Almazan, Lluis Gomez, Suman Ghosh, Ernest Valveny and Dimosthenis Karatzas. 2020. WATTS: A common representation of word images and strings using embedded attributes for text recognition and retrieval. In Analysis”, K.A. and C.V. Jawahar, eds. Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis. Springer. (Series on Advances in Computer Vision and Pattern Recognition.)
|
|
|
Klara Janousckova, Jiri Matas, Lluis Gomez and Dimosthenis Karatzas. 2020. Text Recognition – Real World Data and Where to Find Them. 25th International Conference on Pattern Recognition.4489–4496.
Abstract: We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya.
|
|
|
Lei Kang. 2020. Robust Handwritten Text Recognition in Scarce Labeling Scenarios: Disentanglement, Adaptation and Generation. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Handwritten documents are not only preserved in historical archives but also widely used in administrative documents such as cheques and claims. With the rise of the deep learning era, many state-of-the-art approaches have achieved good performance on specific datasets for Handwritten Text Recognition (HTR). However, it is still challenging to solve real use cases because of the varied handwriting styles across different writers and the limited labeled data. Thus, both explorin a more robust handwriting recognition architectures and proposing methods to diminish the gap between the source and target data in an unsupervised way are
demanded.
In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-based method. Secondly, we focus on diminishing the performance gap between source and target data in an unsupervised way. Finally, we propose a group of generative methods for handwritten text images, which could be utilized to increase the training set to obtain a more robust recognizer. In addition, by simply modifying the generative method and joining it with a recognizer, we end up with an effective disentanglement method to distill textual content from handwriting styles so as to achieve a generalized recognition performance.
We outperform state-of-the-art HTR performances in the experimental results among different scientific and industrial datasets, which prove the effectiveness of the proposed methods. To the best of our knowledge, the non-recurrent recognizer and the disentanglement method are the first contributions in the handwriting recognition field. Furthermore, we have outlined the potential research lines, which would be interesting to explore in the future.
|
|
|
Lei Kang, Marçal Rusiñol, Alicia Fornes, Pau Riba and Mauricio Villegas. 2020. Unsupervised Adaptation for Synthetic-to-Real Handwritten Word Recognition. IEEE Winter Conference on Applications of Computer Vision.
Abstract: Handwritten Text Recognition (HTR) is still a challenging problem because it must deal with two important difficulties: the variability among writing styles, and the scarcity of labelled data. To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems. However, training with such data produces encouraging but still inaccurate transcriptions in real words. In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer. We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations. Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step.
|
|
|
Lei Kang, Pau Riba, Marçal Rusiñol, Alicia Fornes and Mauricio Villegas. 2020. Distilling Content from Style for Handwritten Word Recognition. 17th International Conference on Frontiers in Handwriting Recognition.
Abstract: Despite the latest transcription accuracies reached using deep neural network architectures, handwritten text recognition still remains a challenging problem, mainly because of the large inter-writer style variability. Both augmenting the training set with artificial samples using synthetic fonts, and writer adaptation techniques have been proposed to yield more generic approaches aimed at dodging style unevenness. In this work, we take a step closer to learn style independent features from handwritten word images. We propose a novel method that is able to disentangle the content and style aspects of input images by jointly optimizing a generative process and a handwritten
word recognizer. The generator is aimed at transferring writing style features from one sample to another in an image-to-image translation approach, thus leading to a learned content-centric features that shall be independent to writing style attributes.
Our proposed recognition model is able then to leverage such writer-agnostic features to reach better recognition performances. We advance over prior training strategies and demonstrate with qualitative and quantitative evaluations the performance of both
the generative process and the recognition efficiency in the IAM dataset.
|
|
|
Lei Kang, Pau Riba, Yaxing Wang, Marçal Rusiñol, Alicia Fornes and Mauricio Villegas. 2020. GANwriting: Content-Conditioned Generation of Styled Handwritten Word Images. 16th European Conference on Computer Vision.
Abstract: Although current image generation methods have reached impressive quality levels, they are still unable to produce plausible yet diverse images of handwritten words. On the contrary, when writing by hand, a great variability is observed across different writers, and even when analyzing words scribbled by the same individual, involuntary variations are conspicuous. In this work, we take a step closer to producing realistic and varied artificially rendered handwritten words. We propose a novel method that is able to produce credible handwritten word images by conditioning the generative process with both calligraphic style features and textual content. Our generator is guided by three complementary learning objectives: to produce realistic images, to imitate a certain handwriting style and to convey a specific textual content. Our model is unconstrained to any predefined vocabulary, being able to render whatever input word. Given a sample writer, it is also able to mimic its calligraphic features in a few-shot setup. We significantly advance over prior art and demonstrate with qualitative, quantitative and human-based evaluations the realistic aspect of our synthetically produced images.
|
|
|
Lluis Gomez, Anguelos Nicolaou, Marçal Rusiñol and Dimosthenis Karatzas. 2020. 12 years of ICDAR Robust Reading Competitions: The evolution of reading systems for unconstrained text understanding. In K. Alahari and C.V. Jawahar, eds. Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis. Springer. (Series on Advances in Computer Vision and Pattern Recognition.)
|
|