|
Marçal Rusiñol, David Aldavert, Ricardo Toledo and Josep Llados. 2011. Browsing Heterogeneous Document Collections by a Segmentation-Free Word Spotting Method. 11th International Conference on Document Analysis and Recognition.63–67.
Abstract: In this paper, we present a segmentation-free word spotting method that is able to deal with heterogeneous document image collections. We propose a patch-based framework where patches are represented by a bag-of-visual-words model powered by SIFT descriptors. A later refinement of the feature vectors is performed by applying the latent semantic indexing technique. The proposed method performs well on both handwritten and typewritten historical document images. We have also tested our method on documents written in non-Latin scripts.
|
|
|
Joana Maria Pujadas-Mora, Alicia Fornes, Josep Llados and Anna Cabre. 2016. Bridging the gap between historical demography and computing: tools for computer-assisted transcription and the analysis of demographic sources. In K.Matthijs, S.Hin, H.Matsuo and J.Kok, eds. The future of historical demography. Upside down and inside out. Acco Publishers, 127–131.
|
|
|
Miquel Ferrer, Ernest Valveny and F. Serratosa. 2007. Bounding the Size Of the Median Graph. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478(2):491–498.
|
|
|
Marçal Rusiñol, Philippe Dosch and Josep Llados. 2007. Boundary Shape Recognition Using Accumulated Length and Angle Information. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478:210–217.
|
|
|
Marçal Rusiñol and Josep Llados. 2014. Boosting the Handwritten Word Spotting Experience by Including the User in the Loop. PR, 47(3), 1063–1072.
Abstract: In this paper, we study the effect of taking the user into account in a query-by-example handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and two baseline word spotting approaches both based on the bag-of-visual-words model. We finally present two alternative ways of presenting the results to the user that might be more attractive and suitable to the user's needs than the classic ranked list.
Keywords: Handwritten word spotting; Query by example; Relevance feedback; Query fusion; Multidimensional scaling
|
|
|
Kai Wang, Luis Herranz, Anjan Dutta and Joost Van de Weijer. 2020. Bookworm continual learning: beyond zero-shot learning and continual learning. Workshop TASK-CV 2020.
Abstract: We propose bookworm continual learning(BCL), a flexible setting where unseen classes can be inferred via a semantic model, and the visual model can be updated continually. Thus BCL generalizes both continual learning (CL) and zero-shot learning (ZSL). We also propose the bidirectional imagination (BImag) framework to address BCL where features of both past and future classes are generated. We observe that conditioning the feature generator on attributes can actually harm the continual learning ability, and propose two variants (joint class-attribute conditioning and asymmetric generation) to alleviate this problem.
|
|
|
Sergio Escalera, Alicia Fornes, O. Pujol, Petia Radeva, Gemma Sanchez and Josep Llados. 2009. Blurred Shape Model for Binary and Grey-level Symbol Recognition. PRL, 30(15), 1424–1433.
Abstract: Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.
|
|
|
Sophie Wuerger, Kaida Xiao, Dimitris Mylonas, Q. Huang, Dimosthenis Karatzas and Galina Paramei. 2012. Blue green color categorization in mandarin english speakers. JOSA A, 29(2), A102–A1207.
Abstract: Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF.
|
|
|
Anton Cervantes, Gemma Sanchez, Josep Llados, Agnes Borras and A. Rodriguez. 2005. Biometric Recognition Based on Line Shape Descriptors. Sixth IAPR International Workshop on Graphics Recognition (GREC 2005).335–344.
|
|
|
Anton Cervantes, Gemma Sanchez, Josep Llados, Agnes Borras and Ana Rodriguez. 2006. Biometric Recognition Based on Line Shape Descriptors. Lecture Notes in Computer Science. Springer Link, 346–357,.
Abstract: Abstract. In this paper we propose biometric descriptors inspired by shape signatures traditionally used in graphics recognition approaches. In particular several methods based on line shape descriptors used to iden- tify newborns from the biometric information of the ears are developed. The process steps are the following: image acquisition, ear segmentation, ear normalization, feature extraction and identification. Several shape signatures are defined from contour images. These are formulated in terms of zoning and contour crossings descriptors. Experimental results are presented to demonstrate the effectiveness of the used techniques.
|
|