|
Lei Kang, Pau Riba, Marcal Rusinol, Alicia Fornes and Mauricio Villegas. 2021. Content and Style Aware Generation of Text-line Images for Handwriting Recognition. TPAMI.
Abstract: Handwritten Text Recognition has achieved an impressive performance in public benchmarks. However, due to the high inter- and intra-class variability between handwriting styles, such recognizers need to be trained using huge volumes of manually labeled training data. To alleviate this labor-consuming problem, synthetic data produced with TrueType fonts has been often used in the training loop to gain volume and augment the handwriting style variability. However, there is a significant style bias between synthetic and real data which hinders the improvement of recognition performance. To deal with such limitations, we propose a generative method for handwritten text-line images, which is conditioned on both visual appearance and textual content. Our method is able to produce long text-line samples with diverse handwriting styles. Once properly trained, our method can also be adapted to new target data by only accessing unlabeled text-line images to mimic handwritten styles and produce images with any textual content. Extensive experiments have been done on making use of the generated samples to boost Handwritten Text Recognition performance. Both qualitative and quantitative results demonstrate that the proposed approach outperforms the current state of the art.
|
|
|
L.Tarazon and 6 others. 2009. Confidence Measures for Error Correction in Interactive Transcription of Handwritten Text. 15th International Conference on Image Analysis and Processing. Springer Berlin Heidelberg, 567–574. (LNCS.)
Abstract: An effective approach to transcribe old text documents is to follow an interactive-predictive paradigm in which both, the system is guided by the human supervisor, and the supervisor is assisted by the system to complete the transcription task as efficiently as possible. In this paper, we focus on a particular system prototype called GIDOC, which can be seen as a first attempt to provide user-friendly, integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. More specifically, we focus on the handwriting recognition part of GIDOC, for which we propose the use of confidence measures to guide the human supervisor in locating possible system errors and deciding how to proceed. Empirical results are reported on two datasets showing that a word error rate not larger than a 10% can be achieved by only checking the 32% of words that are recognised with less confidence.
|
|
|
Josep Llados. 2006. Computer Vision: Progress of Research and Development.
|
|
|
Debora Gil, Jordi Gonzalez and Gemma Sanchez, eds. 2007. Computer Vision: Advances in Research and Development. Bellaterra (Spain), UAB. (2.)
|
|
|
Gemma Sanchez, Alicia Fornes, Joan Mas and Josep Llados. 2007. Computer Vision Tools for Visually Impaired Children Learning.
|
|
|
Gemma Sanchez, Alicia Fornes, Joan Mas and Josep Llados. 2007. Computer Vision Tools for Visually Impaired Children Learning.
|
|
|
Miquel Ferrer, Ernest Valveny and F. Serratosa. 2007. Comparison Between two Spectral-based Methods for Median Graph Computation. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478(2):580–587.
|
|
|
Salim Jouili, Salvatore Tabbone and Ernest Valveny. 2009. Comparing Graph Similarity Measures for Graphical Recognition. 8th IAPR International Workshop on Graphics Recognition. Springer. (LNCS.)
Abstract: In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique.
|
|
|
Salim Jouili, Salvatore Tabbone and Ernest Valveny. 2010. Comparing Graph Similarity Measures for Graphical Recognition. Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers. Springer Berlin Heidelberg, 37–48. (LNCS.)
Abstract: In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique.
|
|
|
Anjan Dutta, Umapada Pal and Josep Llados. 2016. Compact Correlated Features for Writer Independent Signature Verification. 23rd International Conference on Pattern Recognition.
Abstract: This paper considers the offline signature verification problem which is considered to be an important research line in the field of pattern recognition. In this work we propose hybrid features that consider the local features and their global statistics in the signature image. This has been done by creating a vocabulary of histogram of oriented gradients (HOGs). We impose weights on these local features based on the height information of water reservoirs obtained from the signature. Spatial information between local features are thought to play a vital role in considering the geometry of the signatures which distinguishes the originals from the forged ones. Nevertheless, learning a condensed set of higher order neighbouring features based on visual words, e.g., doublets and triplets, continues to be a challenging problem as possible combinations of visual words grow exponentially. To avoid this explosion of size, we create a code of local pairwise features which are represented as joint descriptors. Local features are paired based on the edges of a graph representation built upon the Delaunay triangulation. We reveal the advantage of combining both type of visual codebooks (order one and pairwise) for signature verification task. This is validated through an encouraging result on two benchmark datasets viz. CEDAR and GPDS300.
|
|