|
Oriol Ramos Terrades. 2003. Descripcio i classificacio de simbols tecnics usant la transformada de crestetes.
|
|
|
Joan Mas, J.A. Jorge, Gemma Sanchez and Josep Llados. 2007. Describing and Parising Hand-Drawn Sketches using a Syntactic Approach. In J. Llados, W.L., J.M. Ogier, ed. Seventh IAPR International Workshop on Graphics Recognition.61–62.
|
|
|
Q. Bao, Marçal Rusiñol, M.Coustaty, Muhammad Muzzamil Luqman, C.D. Tran and Jean-Marc Ogier. 2016. Delaunay triangulation-based features for Camera-based document image retrieval system. 12th IAPR Workshop on Document Analysis Systems.1–6.
Abstract: In this paper, we propose a new feature vector, named DElaunay TRIangulation-based Features (DETRIF), for real-time camera-based document image retrieval. DETRIF is computed based on the geometrical constraints from each pair of adjacency triangles in delaunay triangulation which is constructed from centroids of connected components. Besides, we employ a hashing-based indexing system in order to evaluate the performance of DETRIF and to compare it with other systems such as LLAH and SRIF. The experimentation is carried out on two datasets comprising of 400 heterogeneous-content complex linguistic map images (huge size, 9800 X 11768 pixels resolution)and 700 textual document images.
Keywords: Camera-based Document Image Retrieval; Delaunay Triangulation; Feature descriptors; Indexing
|
|
|
Jon Almazan, Ernest Valveny and Alicia Fornes. 2011. Deforming the Blurred Shape Model for Shape Description and Recognition. In Jordi Vitria, Joao Miguel Raposo and Mario Hernandez, eds. 5th Iberian Conference on Pattern Recognition and Image Analysis. Berlin, Springer-Verlag, 1–8. (LNCS.)
Abstract: This paper presents a new model for the description and recognition of distorted shapes, where the image is represented by a pixel density distribution based on the Blurred Shape Model combined with a non-linear image deformation model. This leads to an adaptive structure able to capture elastic deformations in shapes. This method has been evaluated using thee different datasets where deformations are present, showing the robustness and good performance of the new model. Moreover, we show that incorporating deformation and flexibility, the new model outperforms the BSM approach when classifying shapes with high variability of appearance.
|
|
|
Ernest Valveny and Enric Marti. 2000. Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition. Graphics Recognition Recent Advances, 1941, 193–208.
Abstract: We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols.
|
|
|
Beata Megyesi and 9 others. 2020. Decryption of historical manuscripts: the DECRYPT project. CRYPT, 44(6), 545–559.
Abstract: Many historians and linguists are working individually and in an uncoordinated fashion on the identification and decryption of historical ciphers. This is a time-consuming process as they often work without access to automatic methods and processes that can accelerate the decipherment. At the same time, computer scientists and cryptologists are developing algorithms to decrypt various cipher types without having access to a large number of original ciphertexts. In this paper, we describe the DECRYPT project aiming at the creation of resources and tools for historical cryptology by bringing the expertise of various disciplines together for collecting data, exchanging methods for faster progress to transcribe, decrypt and contextualize historical encrypted manuscripts. We present our goals and work-in progress of a general approach for analyzing historical encrypted manuscripts using standardized methods and a new set of state-of-the-art tools. We release the data and tools as open-source hoping that all mentioned disciplines would benefit and contribute to the research infrastructure of historical cryptology.
Keywords: automatic decryption; cipher collection; historical cryptology; image transcription
|
|
|
Mohamed Ali Souibgui and Y.Kessentini. 2022. DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement. TPAMI, 44(3), 1180–1191.
Abstract: Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems.
|
|
|
Adria Molina, Pau Riba, Lluis Gomez, Oriol Ramos Terrades and Josep Llados. 2021. Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach. 16th International Conference on Document Analysis and Recognition.306–320. (LNCS.)
Abstract: This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods.
|
|
|
Marçal Rusiñol and 7 others. 2012. CVC-UAB's participation in the Flowchart Recognition Task of CLEF-IP 2012. Conference and Labs of the Evaluation Forum.
|
|
|
Alicia Fornes, Anjan Dutta, Albert Gordo and Josep Llados. 2012. CVC-MUSCIMA: A Ground-Truth of Handwritten Music Score Images for Writer Identification and Staff Removal. IJDAR, 15(3), 243–251.
Abstract: 0,405JCR
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper we present the CVC-MUSCIMA database and ground-truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground-truth, partitioning and evaluation metrics, we also provide some base-line results for easing the comparison between different approaches.
Keywords: Music scores; Handwritten documents; Writer identification; Staff removal; Performance evaluation; Graphics recognition; Ground truths
|
|